Goto

Collaborating Authors



Smoothing Regularizers for Projective Basis Function Networks

Neural Information Processing Systems

Smoothing regularizers for radial basis functions have been studied extensively, but no general smoothing regularizers for projective basis junctions (PBFs), such as the widely-used sigmoidal PBFs, have heretofore been proposed. We derive new classes of algebraically-simple mH'-order smoothing regularizers for networks of the form f(W, x)


Edges are the 'Independent Components' of Natural Scenes.

Neural Information Processing Systems

Field (1994) has suggested that neurons with line and edge selectivities found in primary visual cortex of cats and monkeys form a sparse, distributed representation of natural scenes, and Barlow (1989) has reasoned that such responses should emerge from an unsupervised learning algorithm that attempts to find a factorial code of independent visual features. We show here that nonlinear'infomax', when applied to an ensemble of natural scenes, produces sets of visual filters that are localised and oriented. Some of these filters are Gabor-like and resemble those produced by the sparseness-maximisation network of Olshausen & Field (1996). In addition, the outputs of these filters are as independent as possible, since the infomax network is able to perform Independent Components Analysis (ICA). We compare the resulting ICA filters and their associated basis functions, with other decorrelating filters produced by Principal Components Analysis (PCA) and zero-phase whitening filters (ZCA).


Triangulation by Continuous Embedding

Neural Information Processing Systems

When triangulating a belief network we aim to obtain a junction tree of minimum state space. According to (Rose, 1970), searching for the optimal triangulation can be cast as a search over all the permutations of the graph's vertices. Our approach is to embed the discrete set of permutations in a convex continuous domain D. By suitably extending the cost function over D and solving the continous nonlinear optimization task we hope to obtain a good triangulation with respect to the aformentioned cost. This paper presents two ways of embedding the triangulation problem into continuous domain and shows that they perform well compared to the best known heuristic.


Training Algorithms for Hidden Markov Models using Entropy Based Distance Functions

Neural Information Processing Systems

By adapting a framework used for supervised learning, we construct iterative algorithms that maximize the likelihood of the observations while also attempting to stay "close" to the current estimated parameters. We use a bound on the relative entropy between the two HMMs as a distance measure between them. The result is new iterative training algorithms which are similar to the EM (Baum-Welch) algorithm for training HMMs. The proposed algorithms are composed of a step similar to the expectation step of Baum-Welch and a new update of the parameters which replaces the maximization (re-estimation) step. The algorithm takes only negligibly more time per iteration and an approximated version uses the same expectation step as Baum-Welch.


Bayesian Unsupervised Learning of Higher Order Structure

Neural Information Processing Systems

Many real world patterns have a hierarchical underlying structure in which simple features have a higher order structure among themselves. Because these relationships are often statistical in nature, it is natural to view the process of discovering such structures as a statistical inference problem in which a hierarchical model is fit to data. Hierarchical statistical structure can be conveniently represented with Bayesian belief networks (Pearl, 1988; Lauritzen and Spiegelhalter, 1988; Neal, 1992). These 530 M. S. Lewicki and T. 1. Sejnowski models are powerful, because they can capture complex statistical relationships among the data variables, and also mathematically convenient, because they allow efficient computation of the joint probability for any given set of model parameters.


Rapid Visual Processing using Spike Asynchrony

Neural Information Processing Systems

We have investigated the possibility that rapid processing in the visual system could be achieved by using the order of firing in different neurones as a code, rather than more conventional firing rate schemes. Using SPIKENET, a neural net simulator based on integrate-and-fire neurones and in which neurones in the input layer function as analogto-delay converters, we have modeled the initial stages of visual processing. Initial results are extremely promising. Even with activity in retinal output cells limited to one spike per neuron per image (effectively ruling out any form of rate coding), sophisticated processing based on asynchronous activation was nonetheless possible.


A Neural Model of Visual Contour Integration

Neural Information Processing Systems

Sometimes local features group into regions, as in texture segmentation; at other times they group into contours which may represent object boundaries. Although much is known about the processing steps that extract local features such as oriented input edges, it is still unclear how local features are grouped into global ones more meaningful for objects.


Combining Neural Network Regression Estimates with Regularized Linear Weights

Neural Information Processing Systems

When combining a set of learned models to form an improved estimator, the issue of redundancy or multicollinearity in the set of models must be addressed. A progression of existing approaches and their limitations with respect to the redundancy is discussed. A new approach, PCR *, based on principal components regression is proposed to address these limitations. An evaluation of the new approach on a collection of domains reveals that: 1) PCR* was the most robust combination method as the redundancy of the learned models increased, 2) redundancy could be handled without eliminating any of the learned models, and 3) the principal components of the learned models provided a continuum of "regularized" weights from which PCR * could choose.


Extraction of Temporal Features in the Electrosensory System of Weakly Electric Fish

Neural Information Processing Systems

The weakly electric fish, Eigenmannia, generates a quasi sinusoidal, dipole-like electric field at individually fixed frequencies (250 - 600 Hz) by discharging an electric organ located in its tail (see Bullock and Heilgenberg, 1986 for reviews). The fish sense local changes in the electric field by means of two types of tuberous electroreceptors located on the body surface.