Goto

Collaborating Authors

 Koch, Christof


Dissociating Artificial Intelligence from Artificial Consciousness

arXiv.org Artificial Intelligence

Developments in machine learning and computing power suggest that artificial general intelligence is within reach. This raises the question of artificial consciousness: if a computer were to be functionally equivalent to a human, being able to do all we do, would it experience sights, sounds, and thoughts, as we do when we are conscious? Answering this question in a principled manner can only be done on the basis of a theory of consciousness that is grounded in phenomenology and that states the necessary and sufficient conditions for any system, evolved or engineered, to support subjective experience. Here we employ Integrated Information Theory (IIT), which provides principled tools to determine whether a system is conscious, to what degree, and the content of its experience. We consider pairs of systems constituted of simple Boolean units, one of which -- a basic stored-program computer -- simulates the other with full functional equivalence. By applying the principles of IIT, we demonstrate that (i) two systems can be functionally equivalent without being phenomenally equivalent, and (ii) that this conclusion is not dependent on the simulated system's function. We further demonstrate that, according to IIT, it is possible for a digital computer to simulate our behavior, possibly even by simulating the neurons in our brain, without replicating our experience. This contrasts sharply with computational functionalism, the thesis that performing computations of the right kind is necessary and sufficient for consciousness.


Predicting Action Content On-Line and in Real Time before Action Onset โ€“ an Intracranial Human Study

Neural Information Processing Systems

The ability to predict action content from neural signals in real time before the action occurs has been long sought in the neuroscientific study of decision-making, agency and volition. Online real-time (ORT) prediction is important for understanding the relation between neural correlates of decision-making and conscious, voluntary action as well as for brain-machine interfaces. Here, epilepsy patients, implanted with intracranial depth microelectrodes or subdural grid electrodes for clinical purposes, participated in a "matching-pennies" game against an opponent. In each trial, subjects were given a 5 s countdown, after which they had to raise their left or right hand immediately as the "go" signal appeared on a computer screen. They won a fixed amount of money if they raised a different hand than their opponent and lost that amount otherwise.


Predicting Action Content On-Line and in Real Time before Action Onset โ€“ an Intracranial Human Study

Neural Information Processing Systems

The ability to predict action content from neural signals in real time before the action occurshas been long sought in the neuroscientific study of decision-making, agency and volition. Online real-time (ORT) prediction is important for understanding therelation between neural correlates of decision-making and conscious, voluntary action as well as for brain-machine interfaces. Here, epilepsy patients, implanted with intracranial depth microelectrodes or subdural grid electrodes for clinical purposes, participated in a "matching-pennies" game against an opponent. In each trial, subjects were given a 5 s countdown, after which they had to raise their left or right hand immediately as the "go" signal appeared on a computer screen. They won a fixed amount of money if they raised a different hand than their opponent and lost that amount otherwise.


Predicting human gaze using low-level saliency combined with face detection

Neural Information Processing Systems

Under natural viewing conditions, human observers shift their gaze to allocate processing resources to subsets of the visual input. Many computational models have aimed at predicting such voluntary attentional shifts. Although the importance of high level stimulus properties (higher order statistics, semantics) stands undisputed, most models are based on low-level features of the input alone. In this study we recorded eye-movements of human observers while they viewed photographs of natural scenes. About two thirds of the stimuli contained at least one person. We demonstrate that a combined model of face detection and low-level saliency clearly outperforms a low-level model in predicting locations humans fixate. This is reflected in our finding fact that observes, even when not instructed to look for anything particular, fixate on a face with a probability of over 80% within their first two fixations (500ms). Remarkably, the model's predictive performance in images that do not contain faces is not impaired by spurious face detector responses, which is suggestive of a bottom-up mechanism for face detection. In summary, we provide a novel computational approach which combines high level object knowledge (in our case: face locations) with low-level features to successfully predict the allocation of attentional resources.


Graph-Based Visual Saliency

Neural Information Processing Systems

A new bottom-up visual saliency model, Graph-Based Visual Saliency (GBVS), is proposed. It consists of two steps: rst forming activation maps on certain feature channels, and then normalizing them in a way which highlights conspicuity and admits combination with other maps. The model is simple, and biologically plausible insofar as it is naturally parallelized. This model powerfully predicts human xations on 749 variations of 108 natural images, achieving 98% of the ROC area of a human-based control, whereas the classical algorithms of Itti & Koch ([2], [3], [4]) achieve only 84%.


Graph-Based Visual Saliency

Neural Information Processing Systems

A new bottom-up visual saliency model, Graph-Based Visual Saliency (GBVS), is proposed. It consists of two steps: rst forming activation maps on certain feature channels, and then normalizing them in a way which highlights conspicuity and admits combination with other maps. The model is simple, and biologically plausible insofaras it is naturally parallelized. This model powerfully predicts human xations on 749 variations of 108 natural images, achieving 98% of the ROC area of a human-based control, whereas the classical algorithms of Itti & Koch ([2], [3], [4]) achieve only 84%.


Modeling the Modulatory Effect of Attention on Human Spatial Vision

Neural Information Processing Systems

We present new simulation results, in which a computational model of interacting visual neurons simultaneously predicts the modulation of spatial vision thresholds by focal visual attention, for five dual-task human psychophysics experiments. This new study complements our previous findings that attention activates a winnertake-all competition among early visual neurons within one cortical hypercolumn. This "intensified competition" hypothesis assumed that attention equally affects all neurons, and yielded two singleunit predictions: an increase in gain and a sharpening of tuning with attention. While both effects have been separately observed in electrophysiology, no single-unit study has yet shown them simultaneously. Hence, we here explore whether our model could still predict our data if attention might only modulate neuronal gain, but do so non-uniformly across neurons and tasks. Specifically, we investigate whether modulating the gain of only the neurons that are loudest, best-tuned, or most informative about the stimulus, or of all neurons equally but in a task-dependent manner, may account for the data. We find that none of these hypotheses yields predictions as plausible as the intensified competition hypothesis, hence providing additional support for our original findings.



Channel Noise in Excitable Neural Membranes

Neural Information Processing Systems

Stochastic fluctuations of voltage-gated ion channels generate current and voltage noise in neuronal membranes. This noise may be a critical determinantof the efficacy of information processing within neural systems. Using Monte-Carlo simulations, we carry out a systematic investigation ofthe relationship between channel kinetics and the resulting membrane voltage noise using a stochastic Markov version of the Mainen-Sejnowski model of dendritic excitability in cortical neurons. Our simulations show that kinetic parameters which lead to an increase in membrane excitability (increasing channel densities, decreasing temperature) alsolead to an increase in the magnitude of the sub-threshold voltage noise. Noise also increases as the membrane is depolarized from rest towards threshold. This suggests that channel fluctuations may interfere witha neuron's ability to function as an integrator of its synaptic inputs and may limit the reliability and precision of neural information processing.


Channel Noise in Excitable Neural Membranes

Neural Information Processing Systems

Stochastic fluctuations of voltage-gated ion channels generate current and voltage noise in neuronal membranes. This noise may be a critical determinant of the efficacy of information processing within neural systems. Using Monte-Carlo simulations, we carry out a systematic investigation of the relationship between channel kinetics and the resulting membrane voltage noise using a stochastic Markov version of the Mainen-Sejnowski model of dendritic excitability in cortical neurons. Our simulations show that kinetic parameters which lead to an increase in membrane excitability (increasing channel densities, decreasing temperature) also lead to an increase in the magnitude of the sub-threshold voltage noise. Noise also increases as the membrane is depolarized from rest towards threshold. This suggests that channel fluctuations may interfere with a neuron's ability to function as an integrator of its synaptic inputs and may limit the reliability and precision of neural information processing.