End-to-End United Video Dehazing and Detection
Li, Boyi (Huazhong University of Science and Technology) | Peng, Xiulian (Microsoft Research) | Wang, Zhangyang (Texas A&M University) | Xu, Jizheng (Microsoft Research) | Feng, Dan (Huazhong University of Science and Technology)
The recent development of CNN-based image dehazing has revealed the effectiveness of end-to-end modeling. However, extending the idea to end-to-end video dehazing has not been explored yet. In this paper, we propose an End-to-End Video Dehazing Network (EVD-Net), to exploit the temporal consistency between consecutive video frames. A thorough study has been conducted over a number of structure options, to identify the best temporal fusion strategy. Furthermore, we build an End-to-End United Video Dehazing and Detection Network (EVDD-Net), which concatenates and jointly trains EVD-Net with a video object detection model. The resulting augmented end-to-end pipeline has demonstrated much more stable and accurate detection results in hazy video.
Feb-8-2018