Goto

Collaborating Authors

 Peng, Xiulian


Universal Speech Token Learning via Low-Bitrate Neural Codec and Pretrained Representations

arXiv.org Artificial Intelligence

Current large speech language models are mainly based on semantic tokens from discretization of self-supervised learned representations and acoustic tokens from a neural codec, following a semantic-modeling and acoustic-synthesis paradigm. However, semantic tokens discard paralinguistic attributes of speakers that is important for natural spoken communication, while prompt-based acoustic synthesis from semantic tokens has limits in recovering paralinguistic details and suffers from robustness issues, especially when there are domain gaps between the prompt and the target. This paper unifies two types of tokens and proposes the UniCodec, a universal speech token learning that encapsulates all semantics of speech, including linguistic and paralinguistic information, into a compact and semantically-disentangled unified token. Such a unified token can not only benefit speech language models in understanding with paralinguistic hints but also help speech generation with high-quality output. A low-bitrate neural codec is leveraged to learn such disentangled discrete representations at global and local scales, with knowledge distilled from self-supervised learned features. Extensive evaluations on multilingual datasets demonstrate its effectiveness in generating natural, expressive and long-term consistent output quality with paralinguistic attributes well preserved in several speech processing tasks.


Latent-Domain Predictive Neural Speech Coding

arXiv.org Artificial Intelligence

This article has been accepted for publication in IEEE/ACM Transactions on Audio, Speech and Language Processing. This is the author's version which has not been fully edited and content may change prior to final publication. Abstract--Neural audio/speech coding has recently demonstrated its capability to deliver high quality at much lower bitrates than traditional methods. However, existing neural audio/speech codecs employ either acoustic features or learned blind features with a convolutional neural network for encoding, by which there are still temporal redundancies within encoded features. Specifically, the extracted features are encoded conditioned on a prediction from past quantized latent frames so that temporal correlations are further removed. Moreover, we introduce a learnable compression on the timefrequency input to adaptively adjust the attention paid to main frequencies and details at different bitrates. A differentiable vector quantization scheme based on distance-to-soft mapping and Gumbel-Softmax is proposed to better model the latent distributions with rate constraint. Subjective results on multilingual speech datasets show that, with low latency, the proposed TF-Codec at 1 kbps achieves significantly better quality than Opus at 9 kbps, and TF-Codec at 3 kbps outperforms both EVS at 9.6 Numerous studies are conducted to demonstrate the effectiveness of these techniques.


Time-Variance Aware Real-Time Speech Enhancement

arXiv.org Artificial Intelligence

Time-variant factors often occur in real-world full-duplex communication applications. Some of them are caused by the complex environment such as non-stationary environmental noises and varying acoustic path while some are caused by the communication system such as the dynamic delay between the far-end and near-end signals. Current end-to-end deep neural network (DNN) based methods usually model the time-variant components implicitly and can hardly handle the unpredictable time-variance in real-time speech enhancement. To explicitly capture the time-variant components, we propose a dynamic kernel generation (DKG) module that can be introduced as a learnable plug-in to a DNN-based end-to-end pipeline. Specifically, the DKG module generates a convolutional kernel regarding to each input audio frame, so that the DNN model is able to dynamically adjust its weights according to the input signal during inference. Experimental results verify that DKG module improves the performance of the model under time-variant scenarios, in the joint acoustic echo cancellation (AEC) and deep noise suppression (DNS) tasks.


Disentangled Feature Learning for Real-Time Neural Speech Coding

arXiv.org Artificial Intelligence

Recently end-to-end neural audio/speech coding has shown its great potential to outperform traditional signal analysis based audio codecs. This is mostly achieved by following the VQ-VAE paradigm where blind features are learned, vector-quantized and coded. In this paper, instead of blind end-to-end learning, we propose to learn disentangled features for real-time neural speech coding. Specifically, more global-like speaker identity and local content features are learned with disentanglement to represent speech. Such a compact feature decomposition not only achieves better coding efficiency by exploiting bit allocation among different features but also provides the flexibility to do audio editing in embedding space, such as voice conversion in real-time communications. Both subjective and objective results demonstrate its coding efficiency and we find that the learned disentangled features show comparable performance on any-to-any voice conversion with modern self-supervised speech representation learning models with far less parameters and low latency, showing the potential of our neural coding framework.


Frequency-Domain Dynamic Pruning for Convolutional Neural Networks

Neural Information Processing Systems

Deep convolutional neural networks have demonstrated their powerfulness in a variety of applications. However, the storage and computational requirements have largely restricted their further extensions on mobile devices. Recently, pruning of unimportant parameters has been used for both network compression and acceleration. Considering that there are spatial redundancy within most filters in a CNN, we propose a frequency-domain dynamic pruning scheme to exploit the spatial correlations. The frequency-domain coefficients are pruned dynamically in each iteration and different frequency bands are pruned discriminatively, given their different importance on accuracy. Experimental results demonstrate that the proposed scheme can outperform previous spatial-domain counterparts by a large margin. Specifically, it can achieve a compression ratio of 8.4x and a theoretical inference speed-up of 9.2x for ResNet-110, while the accuracy is even better than the reference model on CIFAR-110.


Frequency-Domain Dynamic Pruning for Convolutional Neural Networks

Neural Information Processing Systems

Deep convolutional neural networks have demonstrated their powerfulness in a variety of applications. However, the storage and computational requirements have largely restricted their further extensions on mobile devices. Recently, pruning of unimportant parameters has been used for both network compression and acceleration. Considering that there are spatial redundancy within most filters in a CNN, we propose a frequency-domain dynamic pruning scheme to exploit the spatial correlations. The frequency-domain coefficients are pruned dynamically in each iteration and different frequency bands are pruned discriminatively, given their different importance on accuracy. Experimental results demonstrate that the proposed scheme can outperform previous spatial-domain counterparts by a large margin. Specifically, it can achieve a compression ratio of 8.4x and a theoretical inference speed-up of 9.2x for ResNet-110, while the accuracy is even better than the reference model on CIFAR-110.


End-to-End United Video Dehazing and Detection

AAAI Conferences

The recent development of CNN-based image dehazing has revealed the effectiveness of end-to-end modeling. However, extending the idea to end-to-end video dehazing has not been explored yet. In this paper, we propose an End-to-End Video Dehazing Network (EVD-Net), to exploit the temporal consistency between consecutive video frames. A thorough study has been conducted over a number of structure options, to identify the best temporal fusion strategy. Furthermore, we build an End-to-End United Video Dehazing and Detection Network (EVDD-Net), which concatenates and jointly trains EVD-Net with a video object detection model. The resulting augmented end-to-end pipeline has demonstrated much more stable and accurate detection results in hazy video.