Goto

Collaborating Authors

 Xu, Jizheng


Frequency-Domain Dynamic Pruning for Convolutional Neural Networks

Neural Information Processing Systems

Deep convolutional neural networks have demonstrated their powerfulness in a variety of applications. However, the storage and computational requirements have largely restricted their further extensions on mobile devices. Recently, pruning of unimportant parameters has been used for both network compression and acceleration. Considering that there are spatial redundancy within most filters in a CNN, we propose a frequency-domain dynamic pruning scheme to exploit the spatial correlations. The frequency-domain coefficients are pruned dynamically in each iteration and different frequency bands are pruned discriminatively, given their different importance on accuracy. Experimental results demonstrate that the proposed scheme can outperform previous spatial-domain counterparts by a large margin. Specifically, it can achieve a compression ratio of 8.4x and a theoretical inference speed-up of 9.2x for ResNet-110, while the accuracy is even better than the reference model on CIFAR-110.


Frequency-Domain Dynamic Pruning for Convolutional Neural Networks

Neural Information Processing Systems

Deep convolutional neural networks have demonstrated their powerfulness in a variety of applications. However, the storage and computational requirements have largely restricted their further extensions on mobile devices. Recently, pruning of unimportant parameters has been used for both network compression and acceleration. Considering that there are spatial redundancy within most filters in a CNN, we propose a frequency-domain dynamic pruning scheme to exploit the spatial correlations. The frequency-domain coefficients are pruned dynamically in each iteration and different frequency bands are pruned discriminatively, given their different importance on accuracy. Experimental results demonstrate that the proposed scheme can outperform previous spatial-domain counterparts by a large margin. Specifically, it can achieve a compression ratio of 8.4x and a theoretical inference speed-up of 9.2x for ResNet-110, while the accuracy is even better than the reference model on CIFAR-110.


Facial Landmarks Detection by Self-Iterative Regression Based Landmarks-Attention Network

AAAI Conferences

Cascaded Regression (CR) based methods have been proposed to solve facial landmarks detection problem, which learn a series of descent directions by multiple cascaded regressors separately trained in coarse and fine stages. They outperform the traditional gradient descent based methods in both accuracy and running speed. However, cascaded regression is not robust enough because each regressor's training data comes from the output of previous regressor. Moreover, training multiple regressors requires lots of computing resources, especially for deep learning based methods. In this paper, we develop a Self-Iterative Regression (SIR) framework to improve the model efficiency. Only one self-iterative regressor is trained to learn the descent directions for samples from coarse stages to fine stages, and parameters are iteratively updated by the same regressor. Specifically, we proposed Landmarks-Attention Network (LAN) as our regressor, which concurrently learns features around each landmark and obtains the holistic location increment. By doing so, not only the rest of regressors are removed to simplify the training process, but the number of model parameters is significantly decreased. The experiments demonstrate that with only 3.72M model parameters, our proposed method achieves the state-of-the-art performance.


End-to-End United Video Dehazing and Detection

AAAI Conferences

The recent development of CNN-based image dehazing has revealed the effectiveness of end-to-end modeling. However, extending the idea to end-to-end video dehazing has not been explored yet. In this paper, we propose an End-to-End Video Dehazing Network (EVD-Net), to exploit the temporal consistency between consecutive video frames. A thorough study has been conducted over a number of structure options, to identify the best temporal fusion strategy. Furthermore, we build an End-to-End United Video Dehazing and Detection Network (EVDD-Net), which concatenates and jointly trains EVD-Net with a video object detection model. The resulting augmented end-to-end pipeline has demonstrated much more stable and accurate detection results in hazy video.