Interactive Structure Learning with Structural Query-by-Committee
Christopher Tosh, Sanjoy Dasgupta
In this work, we introduce interactive structure learning, a framework that unifies many different interactive learning tasks. We present a generalization of the queryby-committee active learning algorithm for this setting, and we study its consistency and rate of convergence, both theoretically and empirically, with and without noise.
Leveraging the Exact Likelihood of Deep Latent Variable Models
Pierre-Alexandre Mattei, Jes Frellsen
Deep latent variable models (DLVMs) combine the approximation abilities of deep neural networks and the statistical foundations of generative models. Variational methods are commonly used for inference; however, the exact likelihood of these models has been largely overlooked. The purpose of this work is to study the general properties of this quantity and to show how they can be leveraged in practice. We focus on important inferential problems that rely on the likelihood: estimation and missing data imputation. First, we investigate maximum likelihood estimation for DLVMs: in particular, we show that most unconstrained models used for continuous data have an unbounded likelihood function. This problematic behaviour is demonstrated to be a source of mode collapse. We also show how to ensure the existence of maximum likelihood estimates, and draw useful connections with nonparametric mixture models. Finally, we describe an algorithm for missing data imputation using the exact conditional likelihood of a DLVM. On several data sets, our algorithm consistently and significantly outperforms the usual imputation scheme used for DLVMs.
Batch-Instance Normalization for Adaptively Style-Invariant Neural Networks
Real-world image recognition is often challenged by the variability of visual styles including object textures, lighting conditions, filter effects, etc. Although these variations have been deemed to be implicitly handled by more training data and deeper networks, recent advances in image style transfer suggest that it is also possible to explicitly manipulate the style information. Extending this idea to general visual recognition problems, we present Batch-Instance Normalization (BIN) to explicitly normalize unnecessary styles from images. Considering certain style features play an essential role in discriminative tasks, BIN learns to selectively normalize only disturbing styles while preserving useful styles. The proposed normalization module is easily incorporated into existing network architectures such as Residual Networks, and surprisingly improves the recognition performance in various scenarios. Furthermore, experiments verify that BIN effectively adapts to completely different tasks like object classification and style transfer, by controlling the tradeoff between preserving and removing style variations. BIN can be implemented with only a few lines of code using popular deep learning frameworks.
Xin Li
The need to analyze graphs is ubiquitous across various fields, from social networks to biological research and recommendation systems. Therefore, enabling the ability of large language models (LLMs) to process graphs is an important step toward more advanced general intelligence. However, current LLM benchmarks on graph analysis require models to directly reason over the prompts describing graph topology, and are thus limited to small graphs with only a few dozens of nodes. In contrast, human experts typically write programs based on popular libraries for task solving, and can thus handle graphs with different scales. To this end, a question naturally arises: can LLMs analyze graphs like professionals?
Oracle-Efficient Differentially Private Learning with Public Data Mark Bun Department of Mathematics Department of Computer Science MIT
Due to statistical lower bounds on the learnability of many function classes under privacy constraints, there has been recent interest in leveraging public data to improve the performance of private learning algorithms. In this model, algorithms must always guarantee differential privacy with respect to the private samples while also ensuring learning guarantees when the private data distribution is sufficiently close to that of the public data. Previous work has demonstrated that when sufficient public, unlabelled data is available, private learning can be made statistically tractable, but the resulting algorithms have all been computationally inefficient. In this work, we present the first computationally efficient, algorithms to provably leverage public data to learn privately whenever a function class is learnable non-privately, where our notion of computational efficiency is with respect to the number of calls to an optimization oracle for the function class. In addition to this general result, we provide specialized algorithms with improved sample complexities in the special cases when the function class is convex or when the task is binary classification.