Plotting

 Stiller, Christoph


Conditional Prediction by Simulation for Automated Driving

arXiv.org Artificial Intelligence

Predicting the future trajectories of surrounding traffic participants plays an essential role in automated driving. By anticipating future movements of nearby agents, such as vehicles and vulnerable road users, an automated vehicle (AV) can better plan maneuvers, reduce the risk of collisions, and ensure smoother interactions with other road users. Although existing approaches, e.g., [1-3], effectively predict the future movements of individual traffic participants, they limit an AV to a reactive planning strategy, assuming that the predictions of surrounding vehicles remain unaffected by the AV's planned actions. In highly interactive situations, this often leads to the freezing robot problem [4], where the AV, unable to engage in cooperative planning, simply stops to avoid potential collisions. For example, when it is unable to merge in dense traffic because the predictions of surrounding vehicles do not react to the AV's plan. One approach to resolving this is to condition the prediction on the AV's plan, often referred to as conditional inference [5].


M3TR: Generalist HD Map Construction with Variable Map Priors

arXiv.org Artificial Intelligence

Autonomous vehicles require road information for their operation, usually in form of HD maps. Since offline maps eventually become outdated or may only be partially available, online HD map construction methods have been proposed to infer map information from live sensor data. A key issue remains how to exploit such partial or outdated map information as a prior. We introduce M3TR (Multi-Masking Map Transformer), a generalist approach for HD map construction both with and without map priors. We address shortcomings in ground truth generation for Argoverse 2 and nuScenes and propose the first realistic scenarios with semantically diverse map priors. Examining various query designs, we use an improved method for integrating prior map elements into a HD map construction model, increasing performance by +4.3 mAP. Finally, we show that training across all prior scenarios yields a single Generalist model, whose performance is on par with previous Expert models that can handle only one specific type of map prior. M3TR thus is the first model capable of leveraging variable map priors, making it suitable for real-world deployment. Code is available at https://github.com/immel-f/m3tr


MAP-Former: Multi-Agent-Pair Gaussian Joint Prediction

arXiv.org Artificial Intelligence

There is a gap in risk assessment of trajectories between the trajectory information coming from a traffic motion prediction module and what is actually needed. Closing this gap necessitates advancements in prediction beyond current practices. Existing prediction models yield joint predictions of agents' future trajectories with uncertainty weights or marginal Gaussian probability density functions (PDFs) for single agents. Although, these methods achieve high accurate trajectory predictions, they only provide little or no information about the dependencies of interacting agents. Since traffic is a process of highly interdependent agents, whose actions directly influence their mutual behavior, the existing methods are not sufficient to reliably assess the risk of future trajectories. This paper addresses that gap by introducing a novel approach to motion prediction, focusing on predicting agent-pair covariance matrices in a ``scene-centric'' manner, which can then be used to model Gaussian joint PDFs for all agent-pairs in a scene. We propose a model capable of predicting those agent-pair covariance matrices, leveraging an enhanced awareness of interactions. Utilizing the prediction results of our model, this work forms the foundation for comprehensive risk assessment with statistically based methods for analyzing agents' relations by their joint PDFs.


PITA: Physics-Informed Trajectory Autoencoder

arXiv.org Artificial Intelligence

Validating robotic systems in safety-critical appli-cations requires testing in many scenarios including rare edgecases that are unlikely to occur, requiring to complement real-world testing with testing in simulation. Generative models canbe used to augment real-world datasets with generated data toproduce edge case scenarios by sampling in a learned latentspace. Autoencoders can learn said latent representation for aspecific domain by learning to reconstruct the input data froma lower-dimensional intermediate representation. However, theresulting trajectories are not necessarily physically plausible, butinstead typically contain noise that is not present in the inputtrajectory. To resolve this issue, we propose the novel Physics-Informed Trajectory Autoencoder (PITA) architecture, whichincorporates a physical dynamics model into the loss functionof the autoencoder. This results in smooth trajectories that notonly reconstruct the input trajectory but also adhere to thephysical model. We evaluate PITA on a real-world dataset ofvehicle trajectories and compare its performance to a normalautoencoder and a state-of-the-art action-space autoencoder.


Decision-theoretic MPC: Motion Planning with Weighted Maneuver Preferences Under Uncertainty

arXiv.org Artificial Intelligence

Continuous optimization based motion planners require deciding on a maneuver homotopy before optimizing the trajectory. Under uncertainty, maneuver intentions of other participants can be unclear, and the vehicle might not be able to decide on the most suitable maneuver. This work introduces a method that incorporates multiple maneuver preferences in planning. It optimizes the trajectory by considering weighted maneuver preferences together with uncertainties ranging from perception to prediction while ensuring the feasibility of a chance-constrained fallback option. Evaluations in both driving experiments and simulation studies show enhanced interaction capabilities and comfort levels compared to conventional planners, which consider only a single maneuver.


HD Map Generation from Noisy Multi-Route Vehicle Fleet Data on Highways with Expectation Maximization

arXiv.org Artificial Intelligence

High Definition (HD) maps are necessary for many applications of automated driving (AD), but their manual creation and maintenance is very costly. Vehicle fleet data from series production vehicles can be used to automatically generate HD maps, but the data is often incomplete and noisy. We propose a system for the generation of HD maps from vehicle fleet data, which is tolerant to missing or misclassified detections and can handle drives with multiple routes, generating a single complete map, model-free and without prior reference lines. Using randomly selected drives as pivot drives, a step-wise lateral sampling of detections is performed. These sampled points are then clustered and aligned using Expectation Maximization (EM), estimating a lateral offset for each drive to compensate localization errors. The clustered points are replaced with the maxima of their probability density function (PDF) and connected to form polylines using a modified rectangular linear assignment algorithm. The data from vehicles on varying routes is then fused into a hierarchical singular map graph. The proposed approach achieves an average accuracy below 0.5 meters compared to a hand annotated ground truth map, as well as correctly resolving lane splits and merges, proving the feasibility of the use of vehicle fleet data for the generation of highway HD maps.


Robust Self-Tuning Data Association for Geo-Referencing Using Lane Markings

arXiv.org Artificial Intelligence

Localization in aerial imagery-based maps offers many advantages, such as global consistency, geo-referenced maps, and the availability of publicly accessible data. However, the landmarks that can be observed from both aerial imagery and on-board sensors is limited. This leads to ambiguities or aliasing during the data association. Building upon a highly informative representation (that allows efficient data association), this paper presents a complete pipeline for resolving these ambiguities. Its core is a robust self-tuning data association that adapts the search area depending on the entropy of the measurements. Additionally, to smooth the final result, we adjust the information matrix for the associated data as a function of the relative transform produced by the data association process. We evaluate our method on real data from urban and rural scenarios around the city of Karlsruhe in Germany. We compare state-of-the-art outlier mitigation methods with our self-tuning approach, demonstrating a considerable improvement, especially for outer-urban scenarios.


DA-LMR: A Robust Lane Marking Representation for Data Association

arXiv.org Artificial Intelligence

While complete localization approaches are widely studied in the literature, their data association and data representation subprocesses usually go unnoticed. However, both are a key part of the final pose estimation. In this work, we present DA-LMR (Delta-Angle Lane Marking Representation), a robust data representation in the context of localization approaches. We propose a representation of lane markings that encodes how a curve changes in each point and includes this information in an additional dimension, thus providing a more detailed geometric structure description of the data. We also propose DC-SAC (Distance-Compatible Sample Consensus), a data association method. This is a heuristic version of RANSAC that dramatically reduces the hypothesis space by distance compatibility restrictions. We compare the presented methods with some state-of-the-art data representation and data association approaches in different noisy scenarios. The DA-LMR and DC-SAC produce the most promising combination among those compared, reaching 98.1% in precision and 99.7% in recall for noisy data with 0.5 m of standard deviation.


Minimizing Safety Interference for Safe and Comfortable Automated Driving with Distributional Reinforcement Learning

arXiv.org Artificial Intelligence

Despite recent advances in reinforcement learning (RL), its application in safety critical domains like autonomous vehicles is still challenging. Although punishing RL agents for risky situations can help to learn safe policies, it may also lead to highly conservative behavior. In this paper, we propose a distributional RL framework in order to learn adaptive policies that can tune their level of conservativity at run-time based on the desired comfort and utility. Using a proactive safety verification approach, the proposed framework can guarantee that actions generated from RL are fail-safe according to the worst-case assumptions. Concurrently, the policy is encouraged to minimize safety interference and generate more comfortable behavior. We trained and evaluated the proposed approach and baseline policies using a high level simulator with a variety of randomized scenarios including several corner cases which rarely happen in reality but are very crucial. In light of our experiments, the behavior of policies learned using distributional RL can be adaptive at run-time and robust to the environment uncertainty. Quantitatively, the learned distributional RL agent drives in average 8 seconds faster than the normal DQN policy and requires 83\% less safety interference compared to the rule-based policy with slightly increasing the average crossing time. We also study sensitivity of the learned policy in environments with higher perception noise and show that our algorithm learns policies that can still drive reliable when the perception noise is two times higher than the training configuration for automated merging and crossing at occluded intersections.


Risk-Aware High-level Decisions for Automated Driving at Occluded Intersections with Reinforcement Learning

arXiv.org Artificial Intelligence

Reinforcement learning is nowadays a popular framework for solving different decision making problems in automated driving. However, there are still some remaining crucial challenges that need to be addressed for providing more reliable policies. In this paper, we propose a generic risk-aware DQN approach in order to learn high level actions for driving through unsignalized occluded intersections. The proposed state representation provides lane based information which allows to be used for multi-lane scenarios. Moreover, we propose a risk based reward function which punishes risky situations instead of only collision failures. Such rewarding approach helps to incorporate risk prediction into our deep Q network and learn more reliable policies which are safer in challenging situations. The efficiency of the proposed approach is compared with a DQN learned with conventional collision based rewarding scheme and also with a rule-based intersection navigation policy. Evaluation results show that the proposed approach outperforms both of these methods. It provides safer actions than collision-aware DQN approach and is less overcautious than the rule-based policy.