Grossi, Michele
Expressive equivalence of classical and quantum restricted Boltzmann machines
Demidik, Maria, Tüysüz, Cenk, Piatkowski, Nico, Grossi, Michele, Jansen, Karl
Quantum computers offer the potential for efficiently sampling from complex probability distributions, attracting increasing interest in generative modeling within quantum machine learning. This surge in interest has driven the development of numerous generative quantum models, yet their trainability and scalability remain significant challenges. A notable example is a quantum restricted Boltzmann machine (QRBM), which is based on the Gibbs state of a parameterized non-commuting Hamiltonian. While QRBMs are expressive, their non-commuting Hamiltonians make gradient evaluation computationally demanding, even on fault-tolerant quantum computers. In this work, we propose a semi-quantum restricted Boltzmann machine (sqRBM), a model designed for classical data that mitigates the challenges associated with previous QRBM proposals. The sqRBM Hamiltonian is commuting in the visible subspace while remaining non-commuting in the hidden subspace. This structure allows us to derive closed-form expressions for both output probabilities and gradients. Leveraging these analytical results, we demonstrate that sqRBMs share a close relationship with classical restricted Boltzmann machines (RBM). Our theoretical analysis predicts that, to learn a given probability distribution, an RBM requires three times as many hidden units as an sqRBM, while both models have the same total number of parameters. We validate these findings through numerical simulations involving up to 100 units. Our results suggest that sqRBMs could enable practical quantum machine learning applications in the near future by significantly reducing quantum resource requirements.
Guided Quantum Compression for Higgs Identification
Belis, Vasilis, Odagiu, Patrick, Grossi, Michele, Reiter, Florentin, Dissertori, Günther, Vallecorsa, Sofia
Quantum machine learning provides a fundamentally novel and promising approach to analyzing data. However, many data sets are too complex for currently available quantum computers. Consequently, quantum machine learning applications conventionally resort to dimensionality reduction algorithms, e.g., auto-encoders, before passing data through the quantum models. We show that using a classical auto-encoder as an independent preprocessing step can significantly decrease the classification performance of a quantum machine learning algorithm. To ameliorate this issue, we design an architecture that unifies the preprocessing and quantum classification algorithms into a single trainable model: the guided quantum compression model. The utility of this model is demonstrated by using it to identify the Higgs boson in proton-proton collisions at the LHC, where the conventional approach proves ineffective. Conversely, the guided quantum compression model excels at solving this classification problem, achieving a good accuracy. Additionally, the model developed herein shows better performance compared to the classical benchmark when using only low-level kinematic features.
Symmetry breaking in geometric quantum machine learning in the presence of noise
Tüysüz, Cenk, Chang, Su Yeon, Demidik, Maria, Jansen, Karl, Vallecorsa, Sofia, Grossi, Michele
Geometric quantum machine learning based on equivariant quantum neural networks (EQNN) recently appeared as a promising direction in quantum machine learning. Despite the encouraging progress, the studies are still limited to theory, and the role of hardware noise in EQNN training has never been explored. This work studies the behavior of EQNN models in the presence of noise. We show that certain EQNN models can preserve equivariance under Pauli channels, while this is not possible under the amplitude damping channel. We claim that the symmetry breaking grows linearly in the number of layers and noise strength. We support our claims with numerical data from simulations as well as hardware up to 64 qubits. Furthermore, we provide strategies to enhance the symmetry protection of EQNN models in the presence of noise.
Automatic and effective discovery of quantum kernels
Incudini, Massimiliano, Bosco, Daniele Lizzio, Martini, Francesco, Grossi, Michele, Serra, Giuseppe, Di Pierro, Alessandra
Quantum computing can empower machine learning models by enabling kernel machines to leverage quantum kernels for representing similarity measures between data. Quantum kernels are able to capture relationships in the data that are not efficiently computable on classical devices. However, there is no straightforward method to engineer the optimal quantum kernel for each specific use case. While recent literature has focused on exploiting the potential offered by the presence of symmetries in the data to guide the construction of quantum kernels, we adopt here a different approach, which employs optimization techniques, similar to those used in neural architecture search and AutoML, to automatically find an optimal kernel in a heuristic manner. The algorithm we present constructs a quantum circuit implementing the similarity measure as a combinatorial object, which is evaluated based on a cost function and is then iteratively modified using a meta-heuristic optimization technique. The cost function can encode many criteria ensuring favorable statistical properties of the candidate solution, such as the rank of the Dynamical Lie Algebra. Importantly, our approach is independent of the optimization technique employed. The results obtained by testing our approach on a high-energy physics problem demonstrate that, in the best-case scenario, we can either match or improve testing accuracy with respect to the manual design approach, showing the potential of our technique to deliver superior results with reduced effort.
Quantum Advantage Seeker with Kernels (QuASK): a software framework to speed up the research in quantum machine learning
Di Marcantonio, Francesco, Incudini, Massimiliano, Tezza, Davide, Grossi, Michele
Exploiting the properties of quantum information to the benefit of machine learning models is perhaps the most active field of research in quantum computation. This interest has supported the development of a multitude of software frameworks (e.g. Qiskit, Pennylane, Braket) to implement, simulate, and execute quantum algorithms. Most of them allow us to define quantum circuits, run basic quantum algorithms, and access low-level primitives depending on the hardware such software is supposed to run. For most experiments, these frameworks have to be manually integrated within a larger machine learning software pipeline. The researcher is in charge of knowing different software packages, integrating them through the development of long code scripts, analyzing the results, and generating the plots. Long code often leads to erroneous applications, due to the average number of bugs growing proportional with respect to the program length. Moreover, other researchers will struggle to understand and reproduce the experiment, due to the need to be familiar with all the different software frameworks involved in the code script. We propose QuASK, an open-source quantum machine learning framework written in Python that aids the researcher in performing their experiments, with particular attention to quantum kernel techniques. QuASK can be used as a command-line tool to download datasets, pre-process them, quantum machine learning routines, analyze and visualize the results. QuASK implements most state-of-the-art algorithms to analyze the data through quantum kernels, with the possibility to use projected kernels, (gradient-descent) trainable quantum kernels, and structure-optimized quantum kernels. Our framework can also be used as a library and integrated into pre-existing software, maximizing code reuse.
Approximately Equivariant Quantum Neural Network for $p4m$ Group Symmetries in Images
Chang, Su Yeon, Grossi, Michele, Saux, Bertrand Le, Vallecorsa, Sofia
Quantum Neural Networks (QNNs) are suggested as one of the quantum algorithms which can be efficiently simulated with a low depth on near-term quantum hardware in the presence of noises. However, their performance highly relies on choosing the most suitable architecture of Variational Quantum Algorithms (VQAs), and the problem-agnostic models often suffer issues regarding trainability and generalization power. As a solution, the most recent works explore Geometric Quantum Machine Learning (GQML) using QNNs equivariant with respect to the underlying symmetry of the dataset. GQML adds an inductive bias to the model by incorporating the prior knowledge on the given dataset and leads to enhancing the optimization performance while constraining the search space. This work proposes equivariant Quantum Convolutional Neural Networks (EquivQCNNs) for image classification under planar $p4m$ symmetry, including reflectional and $90^\circ$ rotational symmetry. We present the results tested in different use cases, such as phase detection of the 2D Ising model and classification of the extended MNIST dataset, and compare them with those obtained with the non-equivariant model, proving that the equivariance fosters better generalization of the model.
Hybrid Ground-State Quantum Algorithms based on Neural Schr\"odinger Forging
de Schoulepnikoff, Paulin, Kiss, Oriel, Vallecorsa, Sofia, Carleo, Giuseppe, Grossi, Michele
Entanglement forging based variational algorithms leverage the bi-partition of quantum systems for addressing ground state problems. The primary limitation of these approaches lies in the exponential summation required over the numerous potential basis states, or bitstrings, when performing the Schmidt decomposition of the whole system. To overcome this challenge, we propose a new method for entanglement forging employing generative neural networks to identify the most pertinent bitstrings, eliminating the need for the exponential sum. Through empirical demonstrations on systems of increasing complexity, we show that the proposed algorithm achieves comparable or superior performance compared to the existing standard implementation of entanglement forging. Moreover, by controlling the amount of required resources, this scheme can be applied to larger, as well as non permutation invariant systems, where the latter constraint is associated with the Heisenberg forging procedure. We substantiate our findings through numerical simulations conducted on spins models exhibiting one-dimensional ring, two-dimensional triangular lattice topologies, and nuclear shell model configurations.
Assessment of few-hits machine learning classification algorithms for low energy physics in liquid argon detectors
Biassoni, Matteo, Giachero, Andrea, Grossi, Michele, Guffanti, Daniele, Labranca, Danilo, Moretti, Roberto, Rossi, Marco, Terranova, Francesco, Vallecorsa, Sofia
The physics potential of massive liquid argon TPCs in the low-energy regime is still to be fully reaped because few-hits events encode information that can hardly be exploited by conventional classification algorithms. Machine learning (ML) techniques give their best in these types of classification problems. In this paper, we evaluate their performance against conventional (deterministic) algorithms. We demonstrate that both Convolutional Neural Networks (CNN) and Transformer-Encoder methods outperform deterministic algorithms in one of the most challenging classification problems of low-energy physics (single- versus double-beta events). We discuss the advantages and pitfalls of Transformer-Encoder methods versus CNN and employ these methods to optimize the detector parameters, with an emphasis on the DUNE Phase II detectors ("Module of Opportunity").
Trainability barriers and opportunities in quantum generative modeling
Rudolph, Manuel S., Lerch, Sacha, Thanasilp, Supanut, Kiss, Oriel, Vallecorsa, Sofia, Grossi, Michele, Holmes, Zoë
Quantum generative models, in providing inherently efficient sampling strategies, show promise for achieving a near-term advantage on quantum hardware. Nonetheless, important questions remain regarding their scalability. In this work, we investigate the barriers to the trainability of quantum generative models posed by barren plateaus and exponential loss concentration. We explore the interplay between explicit and implicit models and losses, and show that using implicit generative models (such as quantum circuit-based models) with explicit losses (such as the KL divergence) leads to a new flavour of barren plateau. In contrast, the Maximum Mean Discrepancy (MMD), which is a popular example of an implicit loss, can be viewed as the expectation value of an observable that is either low-bodied and trainable, or global and untrainable depending on the choice of kernel. However, in parallel, we highlight that the low-bodied losses required for trainability cannot in general distinguish high-order correlations, leading to a fundamental tension between exponential concentration and the emergence of spurious minima. We further propose a new local quantum fidelity-type loss which, by leveraging quantum circuits to estimate the quality of the encoded distribution, is both faithful and enjoys trainability guarantees. Finally, we compare the performance of different loss functions for modelling real-world data from the High-Energy-Physics domain and confirm the trends predicted by our theoretical results.
Quantum anomaly detection in the latent space of proton collision events at the LHC
Woźniak, Kinga Anna, Belis, Vasilis, Puljak, Ema, Barkoutsos, Panagiotis, Dissertori, Günther, Grossi, Michele, Pierini, Maurizio, Reiter, Florentin, Tavernelli, Ivano, Vallecorsa, Sofia
We propose a new strategy for anomaly detection at the LHC based on unsupervised quantum machine learning algorithms. To accommodate the constraints on the problem size dictated by the limitations of current quantum hardware we develop a classical convolutional autoencoder. The designed quantum anomaly detection models, namely an unsupervised kernel machine and two clustering algorithms, are trained to find new-physics events in the latent representation of LHC data produced by the autoencoder. The performance of the quantum algorithms is benchmarked against classical counterparts on different new-physics scenarios and its dependence on the dimensionality of the latent space and the size of the training dataset is studied. For kernel-based anomaly detection, we identify a regime where the quantum model significantly outperforms its classical counterpart. An instance of the kernel machine is implemented on a quantum computer to verify its suitability for available hardware. We demonstrate that the observed consistent performance advantage is related to the inherent quantum properties of the circuit used.