Goto

Collaborating Authors

 Jin, Ying


UniCombine: Unified Multi-Conditional Combination with Diffusion Transformer

arXiv.org Artificial Intelligence

With the rapid development of diffusion models in image generation, the demand for more powerful and flexible controllable frameworks is increasing. Although existing methods can guide generation beyond text prompts, the challenge of effectively combining multiple conditional inputs while maintaining consistency with all of them remains unsolved. To address this, we introduce UniCombine, a DiT-based multi-conditional controllable generative framework capable of handling any combination of conditions, including but not limited to text prompts, spatial maps, and subject images. Specifically, we introduce a novel Conditional MMDiT Attention mechanism and incorporate a trainable LoRA module to build both the training-free and training-based versions. Additionally, we propose a new pipeline to construct SubjectSpatial200K, the first dataset designed for multi-conditional generative tasks covering both the subject-driven and spatially-aligned conditions. Extensive experimental results on multi-conditional generation demonstrate the outstanding universality and powerful capability of our approach with state-of-the-art performance.


Automated Hypothesis Validation with Agentic Sequential Falsifications

arXiv.org Artificial Intelligence

Hypotheses are central to information acquisition, decision-making, and discovery. However, many real-world hypotheses are abstract, high-level statements that are difficult to validate directly. This challenge is further intensified by the rise of hypothesis generation from Large Language Models (LLMs), which are prone to hallucination and produce hypotheses in volumes that make manual validation impractical. Here we propose Popper, an agentic framework for rigorous automated validation of free-form hypotheses. Guided by Karl Popper's principle of falsification, Popper validates a hypothesis using LLM agents that design and execute falsification experiments targeting its measurable implications. A novel sequential testing framework ensures strict Type-I error control while actively gathering evidence from diverse observations, whether drawn from existing data or newly conducted procedures. We demonstrate Popper on six domains including biology, economics, and sociology. Popper delivers robust error control, high power, and scalability. Furthermore, compared to human scientists, Popper achieved comparable performance in validating complex biological hypotheses while reducing time by 10 folds, providing a scalable, rigorous solution for hypothesis validation.


Beyond Reweighting: On the Predictive Role of Covariate Shift in Effect Generalization

arXiv.org Artificial Intelligence

Many existing approaches to generalizing statistical inference amidst distribution shift operate under the covariate shift assumption, which posits that the conditional distribution of unobserved variables given observable ones is invariant across populations. However, recent empirical investigations have demonstrated that adjusting for shift in observed variables (covariate shift) is often insufficient for generalization. In other words, covariate shift does not typically ``explain away'' the distribution shift between settings. As such, addressing the unknown yet non-negligible shift in the unobserved variables given observed ones (conditional shift) is crucial for generalizable inference. In this paper, we present a series of empirical evidence from two large-scale multi-site replication studies to support a new role of covariate shift in ``predicting'' the strength of the unknown conditional shift. Analyzing 680 studies across 65 sites, we find that even though the conditional shift is non-negligible, its strength can often be bounded by that of the observable covariate shift. However, this pattern only emerges when the two sources of shifts are quantified by our proposed standardized, ``pivotal'' measures. We then interpret this phenomenon by connecting it to similar patterns that can be theoretically derived from a random distribution shift model. Finally, we demonstrate that exploiting the predictive role of covariate shift leads to reliable and efficient uncertainty quantification for target estimates in generalization tasks with partially observed data. Overall, our empirical and theoretical analyses suggest a new way to approach the problem of distributional shift, generalizability, and external validity.


LDA-AQU: Adaptive Query-guided Upsampling via Local Deformable Attention

arXiv.org Artificial Intelligence

Feature upsampling is an essential operation in constructing deep convolutional neural networks. However, existing upsamplers either lack specific feature guidance or necessitate the utilization of high-resolution feature maps, resulting in a loss of performance and flexibility. In this paper, we find that the local self-attention naturally has the feature guidance capability, and its computational paradigm aligns closely with the essence of feature upsampling (\ie feature reassembly of neighboring points). Therefore, we introduce local self-attention into the upsampling task and demonstrate that the majority of existing upsamplers can be regarded as special cases of upsamplers based on local self-attention. Considering the potential semantic gap between upsampled points and their neighboring points, we further introduce the deformation mechanism into the upsampler based on local self-attention, thereby proposing LDA-AQU. As a novel dynamic kernel-based upsampler, LDA-AQU utilizes the feature of queries to guide the model in adaptively adjusting the position and aggregation weight of neighboring points, thereby meeting the upsampling requirements across various complex scenarios. In addition, LDA-AQU is lightweight and can be easily integrated into various model architectures. We evaluate the effectiveness of LDA-AQU across four dense prediction tasks: object detection, instance segmentation, panoptic segmentation, and semantic segmentation. LDA-AQU consistently outperforms previous state-of-the-art upsamplers, achieving performance enhancements of 1.7 AP, 1.5 AP, 2.0 PQ, and 2.5 mIoU compared to the baseline models in the aforementioned four tasks, respectively. Code is available at \url{https://github.com/duzw9311/LDA-AQU}.


Optimized Conformal Selection: Powerful Selective Inference After Conformity Score Optimization

arXiv.org Machine Learning

Model selection/optimization in conformal inference is challenging, since it may break the exchangeability between labeled and unlabeled data. We study this problem in the context of conformal selection, which uses conformal p-values to select ``interesting'' instances with large unobserved labels from a pool of unlabeled data, while controlling the FDR in finite sample. For validity, existing solutions require the model choice to be independent of the data used to construct the p-values and calibrate the selection set. However, when presented with many model choices and limited labeled data, it is desirable to (i) select the best model in a data-driven manner, and (ii) mitigate power loss due to sample splitting. This paper presents OptCS, a general framework that allows valid statistical testing (selection) after flexible data-driven model optimization. We introduce general conditions under which OptCS constructs valid conformal p-values despite substantial data reuse and handles complex p-value dependencies to maintain finite-sample FDR control via a novel multiple testing procedure. We instantiate this general recipe to propose three FDR-controlling procedures, each optimizing the models differently: (i) selecting the most powerful one among multiple pre-trained candidate models, (ii) using all data for model fitting without sample splitting, and (iii) combining full-sample model fitting and selection. We demonstrate the efficacy of our methods via simulation studies and real applications in drug discovery and alignment of large language models in radiology report generation.


Ascend HiFloat8 Format for Deep Learning

arXiv.org Artificial Intelligence

This preliminary white paper proposes a novel 8-bit floating-point data format HiFloat8 (abbreviated as HiF8) for deep learning. HiF8 features tapered precision. For normal value encoding, it provides 7 exponent values with 3-bit mantissa, 8 exponent values with 2-bit mantissa, and 16 exponent values with 1-bit mantissa. For denormal value encoding, it extends the dynamic range by 7 extra powers of 2, from 31 to 38 binades (notice that FP16 covers 40 binades). Meanwhile, HiF8 encodes all the special values except that positive zero and negative zero are represented by only one bit-pattern. Thanks to the better balance between precision and dynamic range, HiF8 can be simultaneously used in both forward and backward passes of AI training. In this paper, we will describe the definition and rounding methods of HiF8, as well as the tentative training and inference solutions. To demonstrate the efficacy of HiF8, massive simulation results on various neural networks, including traditional neural networks and large language models (LLMs), will also be presented.


Adaptively Learning to Select-Rank in Online Platforms

arXiv.org Artificial Intelligence

Ranking algorithms are fundamental to various online platforms across e-commerce sites to content streaming services. Our research addresses the challenge of adaptively ranking items from a candidate pool for heterogeneous users, a key component in personalizing user experience. We develop a user response model that considers diverse user preferences and the varying effects of item positions, aiming to optimize overall user satisfaction with the ranked list. We frame this problem within a contextual bandits framework, with each ranked list as an action. Our approach incorporates an upper confidence bound to adjust predicted user satisfaction scores and selects the ranking action that maximizes these adjusted scores, efficiently solved via maximum weight imperfect matching. We demonstrate that our algorithm achieves a cumulative regret bound of $O(d\sqrt{NKT})$ for ranking $K$ out of $N$ items in a $d$-dimensional context space over $T$ rounds, under the assumption that user responses follow a generalized linear model. This regret alleviates dependence on the ambient action space, whose cardinality grows exponentially with $N$ and $K$ (thus rendering direct application of existing adaptive learning algorithms -- such as UCB or Thompson sampling -- infeasible). Experiments conducted on both simulated and real-world datasets demonstrate our algorithm outperforms the baseline.


Conformal Alignment: Knowing When to Trust Foundation Models with Guarantees

arXiv.org Machine Learning

Before deploying outputs from foundation models in high-stakes tasks, it is imperative to ensure that they align with human values. For instance, in radiology report generation, reports generated by a vision-language model must align with human evaluations before their use in medical decision-making. This paper presents Conformal Alignment, a general framework for identifying units whose outputs meet a user-specified alignment criterion. It is guaranteed that on average, a prescribed fraction of selected units indeed meet the alignment criterion, regardless of the foundation model or the data distribution. Given any pre-trained model and new units with model-generated outputs, Conformal Alignment leverages a set of reference data with ground-truth alignment status to train an alignment predictor. It then selects new units whose predicted alignment scores surpass a data-dependent threshold, certifying their corresponding outputs as trustworthy. Through applications to question answering and radiology report generation, we demonstrate that our method is able to accurately identify units with trustworthy outputs via lightweight training over a moderate amount of reference data. En route, we investigate the informativeness of various features in alignment prediction and combine them with standard models to construct the alignment predictor.


Confidence on the Focal: Conformal Prediction with Selection-Conditional Coverage

arXiv.org Machine Learning

Conformal prediction builds marginally valid prediction intervals which cover the unknown outcome of a randomly drawn new test point with a prescribed probability. In practice, a common scenario is that, after seeing the test unit(s), practitioners decide which test unit(s) to focus on in a data-driven manner, and wish to quantify the uncertainty for the focal unit(s). In such cases, marginally valid prediction intervals for these focal units can be misleading due to selection bias. This paper presents a general framework for constructing a prediction set with finite-sample exact coverage conditional on the unit being selected. Its general form works for arbitrary selection rules, and generalizes Mondrian Conformal Prediction to multiple test units and non-equivariant classifiers. We then work out computationally efficient implementation of our framework for a number of realistic selection rules, including top-K selection, optimization-based selection, selection based on conformal p-values, and selection based on properties of preliminary conformal prediction sets. The performance of our methods is demonstrated via applications in drug discovery and health risk prediction.


Uncertainty Quantification over Graph with Conformalized Graph Neural Networks

arXiv.org Machine Learning

Graph Neural Networks (GNNs) are powerful machine learning prediction models on graph-structured data. However, GNNs lack rigorous uncertainty estimates, limiting their reliable deployment in settings where the cost of errors is significant. We propose conformalized GNN (CF-GNN), extending conformal prediction (CP) to graph-based models for guaranteed uncertainty estimates. Given an entity in the graph, CF-GNN produces a prediction set/interval that provably contains the true label with pre-defined coverage probability (e.g. 90%). We establish a permutation invariance condition that enables the validity of CP on graph data and provide an exact characterization of the test-time coverage. Moreover, besides valid coverage, it is crucial to reduce the prediction set size/interval length for practical use. We observe a key connection between non-conformity scores and network structures, which motivates us to develop a topology-aware output correction model that learns to update the prediction and produces more efficient prediction sets/intervals. Extensive experiments show that CF-GNN achieves any pre-defined target marginal coverage while significantly reducing the prediction set/interval size by up to 74% over the baselines. It also empirically achieves satisfactory conditional coverage over various raw and network features.