Chen, Shiyi
An explainable operator approximation framework under the guideline of Green's function
Gu, Jianghang, Wen, Ling, Chen, Yuntian, Chen, Shiyi
However, this process is often computationally expensive and time-consuming. An alternative approach involves transforming PDEs into integral equations and solving them using Green's functions, which provide analytical solutions. Nevertheless, deriving Green's functions analytically is a challenging and non-trivial task, particularly for complex systems. In this study, we introduce a novel framework, termed GreensONet, which is constructed based on the strucutre of deep operator networks (DeepONet) to learn embedded Green's functions and solve PDEs via Green's integral formulation. Specifically, the Trunk Net within GreensONet is designed to approximate the unknown Green's functions of the system, while the Branch Net are utilized to approximate the auxiliary gradients of the Green's function. These outputs are subsequently employed to perform surface integrals and volume integrals, incorporating user-defined boundary conditions and source terms, respectively. The e ff ectiveness of the proposed framework is demonstrated on three types of PDEs in bounded domains: 3D heat conduction equations, reaction-di ff usion equations, and Stokes equations. Comparative results in these cases demonstrate that GreenONet's accuracy and generalization ability surpass those of existing methods, including Physics-Informed Neural Networks (PINN), DeepONet, Physics-Informed DeepONet (PI-DeepONet), and Fourier Neural Operators (FNO).
Diffeomorphic Latent Neural Operators for Data-Efficient Learning of Solutions to Partial Differential Equations
Ahmad, Zan, Chen, Shiyi, Yin, Minglang, Kumar, Avisha, Charon, Nicolas, Trayanova, Natalia, Maggioni, Mauro
A computed approximation of the solution operator to a system of partial differential equations (PDEs) is needed in various areas of science and engineering. Neural operators have been shown to be quite effective at predicting these solution generators after training on high-fidelity ground truth data (e.g. numerical simulations). However, in order to generalize well to unseen spatial domains, neural operators must be trained on an extensive amount of geometrically varying data samples that may not be feasible to acquire or simulate in certain contexts (e.g., patient-specific medical data, large-scale computationally intensive simulations.) We propose that in order to learn a PDE solution operator that can generalize across multiple domains without needing to sample enough data expressive enough for all possible geometries, we can train instead a latent neural operator on just a few ground truth solution fields diffeomorphically mapped from different geometric/spatial domains to a fixed reference configuration. Furthermore, the form of the solutions is dependent on the choice of mapping to and from the reference domain. We emphasize that preserving properties of the differential operator when constructing these mappings can significantly reduce the data requirement for achieving an accurate model due to the regularity of the solution fields that the latent neural operator is training on. We provide motivating numerical experimentation that demonstrates an extreme case of this consideration by exploiting the conformal invariance of the Laplacian
SLR: Learning Quadruped Locomotion without Privileged Information
Chen, Shiyi, Wan, Zeyu, Yan, Shiyang, Zhang, Chun, Zhang, Weiyi, Li, Qiang, Zhang, Debing, Farrukh, Fasih Ud Din
Traditional reinforcement learning control for quadruped robots often relies on privileged information, demanding meticulous selection and precise estimation, thereby imposing constraints on the development process. This work proposes a Self-learning Latent Representation (SLR) method, which achieves high-performance control policy learning without the need for privileged information. To enhance the credibility of our proposed method's evaluation, SLR is compared with open-source code repositories of state-of-the-art algorithms, retaining the original authors' configuration parameters. Across four repositories, SLR consistently outperforms the reference results. Ultimately, the trained policy and encoder empower the quadruped robot to navigate steps, climb stairs, ascend rocks, and traverse various challenging terrains. Robot experiment videos are at https://11chens.github.io/SLR/
Discovering an interpretable mathematical expression for a full wind-turbine wake with artificial intelligence enhanced symbolic regression
Wang, Ding, Chen, Yuntian, Chen, Shiyi
The rapid expansion of wind power worldwide underscores the critical significance of engineering-focused analytical wake models in both the design and operation of wind farms. These theoretically-derived ana lytical wake models have limited predictive capabilities, particularly in the near-wake region close to the turbine rotor, due to assumptions that do not hold. Knowledge discovery methods can bridge these gaps by extracting insights, adjusting for theoretical assumptions, and developing accurate models for physical processes. In this study, we introduce a genetic symbolic regression (SR) algorithm to discover an interpretable mathematical expression for the mean velocity deficit throughout the wake, a previously unavailable insight. By incorporating a double Gaussian distribution into the SR algorithm as domain knowledge and designing a hierarchical equation structure, the search space is reduced, thus efficiently finding a concise, physically informed, and robust wake model. The proposed mathematical expression (equation) can predict the wake velocity deficit at any location in the full-wake region with high precision and stability. The model's effectiveness and practicality are validated through experimental data and high-fidelity numerical simulations.
Filtered Partial Differential Equations: a robust surrogate constraint in physics-informed deep learning framework
Zhang, Dashan, Chen, Yuntian, Chen, Shiyi
Embedding physical knowledge into neural network (NN) training has been a hot topic. However, when facing the complex real-world, most of the existing methods still strongly rely on the quantity and quality of observation data. Furthermore, the neural networks often struggle to converge when the solution to the real equation is very complex. Inspired by large eddy simulation in computational fluid dynamics, we propose an improved method based on filtering. We analyzed the causes of the difficulties in physics informed machine learning, and proposed a surrogate constraint (filtered PDE, FPDE in short) of the original physical equations to reduce the influence of noisy and sparse observation data. In the noise and sparsity experiment, the proposed FPDE models (which are optimized by FPDE constraints) have better robustness than the conventional PDE models. Experiments demonstrate that the FPDE model can obtain the same quality solution with 100% higher noise and 12% quantity of observation data of the baseline. Besides, two groups of real measurement data are used to show the FPDE improvements in real cases. The final results show that FPDE still gives more physically reasonable solutions when facing the incomplete equation problem and the extremely sparse and high-noise conditions. For combining real-world experiment data into physics-informed training, the proposed FPDE constraint is useful and performs well in two real-world experiments: modeling the blood velocity in vessels and cell migration in scratches.
Multi-scale data reconstruction of turbulent rotating flows with Gappy POD, Extended POD and Generative Adversarial Networks
Li, Tianyi, Buzzicotti, Michele, Biferale, Luca, Bonaccorso, Fabio, Chen, Shiyi, Wan, Minping
Data reconstruction of rotating turbulent snapshots is investigated utilizing data-driven tools. This problem is crucial for numerous geophysical applications and fundamental aspects, given the concurrent effects of direct and inverse energy cascades, which lead to non-Gaussian statistics at both large and small scales. Data assimilation also serves as a tool to rank physical features within turbulence, by evaluating the performance of reconstruction in terms of the quality and quantity of the information used. Additionally, benchmarking various reconstruction techniques is essential to assess the trade-off between quantitative supremacy, implementation complexity, and explicability. In this study, we use linear and non-linear tools based on the Proper Orthogonal Decomposition (POD) and Generative Adversarial Network (GAN) for reconstructing rotating turbulence snapshots with spatial damages (inpainting). We focus on accurately reproducing both statistical properties and instantaneous velocity fields. Different gap sizes and gap geometries are investigated in order to assess the importance of coherency and multi-scale properties of the missing information. Surprisingly enough, concerning point-wise reconstruction, the non-linear GAN does not outperform one of the linear POD techniques. On the other hand, supremacy of the GAN approach is shown when the statistical multi-scale properties are compared. Similarly, extreme events in the gap region are better predicted when using GAN. The balance between point-wise error and statistical properties is controlled by the adversarial ratio, which determines the relative importance of the generator and the discriminator in the GAN training. Robustness against the measurement noise is also discussed.
Stabilizing the Maximal Entropy Moment Method for Rarefied Gas Dynamics at Single-Precision
Zheng, Candi, Yang, Wang, Chen, Shiyi
Developing extended hydrodynamics equations valid for both dense and rarefied gases remains a great challenge. A systematical solution for this challenge is the moment method describing both dense and rarefied gas behaviors with moments of gas molecule velocity distributions. Among moment methods, the maximal entropy moment method (MEM) stands out for its well-posedness and stability, which utilizes velocity distributions with maximized entropy. However, finding such distributions requires solving an ill-conditioned and computation-demanding optimization problem. This problem causes numerical overflow and breakdown when the numerical precision is insufficient, especially for flows like high-speed shock waves. It also prevents modern GPUs from accelerating optimization with their enormous single floating-point precision computation power. This paper aims to stabilize MEM, making it practical for simulating very strong normal shock waves on modern GPUs at single precision. We propose the gauge transformations for MEM, making the optimization less ill-conditioned. We also tackle numerical overflow and breakdown by adopting the canonical form of distribution and Newton's modified optimization method. With these techniques, we achieved a single-precision GPU simulation of a Mach 10 shock wave with 35 moments MEM, surpassing the previous double-precision results of Mach 4. Moreover, we argued that over-refined spatial mesh degrades both the accuracy and stability of MEM. Overall, this paper makes the maximal entropy moment method practical for simulating very strong normal shock waves on modern GPUs at single-precision, with significant stability improvement compared to previous methods.
Data-Driven Constitutive Relation Reveals Scaling Law for Hydrodynamic Transport Coefficients
Zheng, Candi, Wang, Yang, Chen, Shiyi
Finding extended hydrodynamics equations valid from the dense gas region to the rarefied gas region remains a great challenge. The key to success is to obtain accurate constitutive relations for stress and heat flux. Data-driven models offer a new phenomenological approach to learning constitutive relations from data. Such models enable complex constitutive relations that extend Newton's law of viscosity and Fourier's law of heat conduction by regression on higher derivatives. However, the choices of derivatives in these models are ad-hoc without a clear physical explanation. We investigated data-driven models theoretically on a linear system. We argue that these models are equivalent to non-linear length scale scaling laws of transport coefficients. The equivalence to scaling laws justified the physical plausibility and revealed the limitation of data-driven models. Our argument also points out that modeling the scaling law could avoid practical difficulties in data-driven models like derivative estimation and variable selection on noisy data. We further proposed a constitutive relation model based on scaling law and tested it on the calculation of Rayleigh scattering spectra. The result shows our data-driven model has a clear advantage over the Chapman-Enskog expansion and moment methods.
Heterogeneous Graph Convolutional Networks for Temporal Community Detection
Zheng, Yaping, Chen, Shiyi, Zhang, Xiaofeng, Wang, Di
The Graph Convolutional Networks (GCN) has demonstrated superior performance in representing graph data, especially homogeneous graphs. However, the real-world graph data is usually heterogeneous and evolves with time, e.g., Facebook and DBLP, which has seldom been studied. To cope with this issue, we propose a novel approach named temporal heterogeneous graph convolutional network (THGCN). THGCN first embeds both spatial information and node attribute information together. Then, it captures short-term evolutionary patterns from the aggregations of embedded graph signals through compression network. Meanwhile, the long-term evolutionary patterns of heterogeneous graph data are also modeled via a TCN temporal convolutional network. To the best of our knowledge, this is the first attempt to model temporal heterogeneous graph data with a focus on community discovery task.