Responsible Data Management

Communications of the ACM 

Incorporating ethics and legal compliance into data-driven algorithmic systems has been attracting significant attention from the computing research community, most notably under the umbrella of fair8 and interpretable16 machine learning. While important, much of this work has been limited in scope to the "last mile" of data analysis and has disregarded both the system's design, development, and use life cycle (What are we automating and why? Is the system working as intended? Are there any unforeseen consequences post-deployment?) and the data life cycle (Where did the data come from? How long is it valid and appropriate?). In this article, we argue two points. First, the decisions we make during data collection and preparation profoundly impact the robustness, fairness, and interpretability of the systems we build. Second, our responsibility for the operation of these systems does not stop when they are deployed. To make our discussion concrete, consider the use of predictive analytics in hiring. Automated hiring systems are seeing ever broader use and are as varied as the hiring practices themselves, ranging from resume screeners that claim to identify promising applicantsa to video and voice analysis tools that facilitate the interview processb and game-based assessments that promise to surface personality traits indicative of future success.c Bogen and Rieke5 describe the hiring process from the employer's point of view as a series of decisions that forms a funnel, with stages corresponding to sourcing, screening, interviewing, and selection. The hiring funnel is an example of an automated decision system--a data-driven, algorithm-assisted process that culminates in job offers to some candidates and rejections to others. The popularity of automated hiring systems is due in no small part to our collective quest for efficiency.

Duplicate Docs Excel Report

None found

Similar Docs  Excel Report  more

None found