Fine-grained Expressivity of Graph Neural Networks

Neural Information Processing Systems 

Numerous recent works have analyzed the expressive power of message-passing graph neural networks (MPNNs), primarily utilizing combinatorial techniques such as the 1-dimensional Weisfeiler-Leman test (1-WL) for the graph isomorphism problem. However, the graph isomorphism objective is inherently binary, not giving insights into the degree of similarity between two given graphs.