Asynchronous Perception Machine for Efficient Test Time Training

Neural Information Processing Systems 

In this work, we propose Asynchronous Perception Machine (APM), a computationally-efficient architecture for test-time-training (TTT). APM can process patches of an image one at a time in any order asymmetrically, and still encode semantic-awareness in the net. We demonstrate APM's ability to recognize out-of-distribution images without dataset-specific pre-training, augmentation or any-pretext task. APM offers competitive performance over existing TTT approaches. To perform TTT, APM just distills test sample's representation once.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found