FedRolex: Model-Heterogeneous Federated Learning with Rolling Sub-Model Extraction
Most cross-device federated learning (FL) studies focus on the model-homogeneous setting where the global server model and local client models are identical. However, such constraint not only excludes low-end clients who would otherwise make unique contributions to model training but also restrains clients from training large models due to on-device resource bottlenecks. In this work, we propose FedRolex, a partial training (PT)-based approach that enables model-heterogeneous FL and can train a global server model larger than the largest client model. At its core, FedRolex employs a rolling sub-model extraction scheme that allows different parts of the global server model to be evenly trained, which mitigates the client drift induced by the inconsistency between individual client models and server model architectures. We show that FedRolex outperforms state-of-the-art PTbased model-heterogeneous FL methods (e.g. Federated Dropout) and reduces the gap between model-heterogeneous and model-homogeneous FL, especially under the large-model large-dataset regime. In addition, we provide theoretical statistical analysis on its advantage over Federated Dropout and evaluate FedRolex on an emulated real-world device distribution to show that FedRolex can enhance the inclusiveness of FL and boost the performance of low-end devices that would otherwise not benefit from FL.
PureGen: Universal Data Purification for Train-Time Poison Defense via Generative Model Dynamics
Train-time data poisoning attacks threaten machine learning models by introducing adversarial examples during training, leading to misclassification. Current defense methods often reduce generalization performance, are attack-specific, and impose significant training overhead. To address this, we introduce a set of universal data purification methods using a stochastic transform, Ψ(x), realized via iterative Langevin dynamics of Energy-Based Models (EBMs), Denoising Diffusion Probabilistic Models (DDPMs), or both. These approaches purify poisoned data with minimal impact on classifier generalization. Our specially trained EBMs and DDPMs provide state-of-the-art defense against various attacks (including Narcissus, Bullseye Polytope, Gradient Matching) on CIFAR-10, Tiny-ImageNet, and CINIC-10, without needing attack or classifier-specific information. We discuss performance trade-offs and show that our methods remain highly effective even with poisoned or distributionally shifted generative model training data.
Evaluate then Cooperate: Shapley-based View Cooperation Enhancement for Multi-view Clustering
The fundamental goal of deep multi-view clustering is to achieve preferable task performance through inter-view cooperation. Although numerous DMVC approaches have been proposed, the collaboration role of individual views have not been well investigated in existing literature. Moreover, how to further enhance view cooperation for better fusion still needs to be explored. In this paper, we firstly consider DMVC as an unsupervised cooperative game where each view can be regarded as a participant. Then, we introduce the Shapley value and propose a novel MVC framework termed Shapley-based Cooperation Enhancing Multi-view Clustering (SCE-MVC), which evaluates view cooperation with game theory. Specially, we employ the optimal transport distance between fused cluster distributions and single view component as the utility function for computing shapley values. Afterwards, we apply shapley values to assess the contribution of each view and utilize these contributions to promote view cooperation. Comprehensive experimental results well support the effectiveness of our framework adopting to existing DMVC frameworks, demonstrating the importance and necessity of enhancing the cooperation among views.
Nintendo just introduced a way to loan out digital games to friends and family
Today's Nintendo Direct provided a surprising bit of software news. The company just announced something called Virtual Game Card, which is a way to make playing and sharing downloaded titles more convenient. As the name suggests, this system creates a digital simulacrum of a physical game card. This means that multi-Switch households will easily be able to start a game on one console and transfer to another without any real hassle. Nintendo says they want to make digital games as easy to use as physical game cards.
Dynamic Inverse Reinforcement Learning for Characterizing Animal Behavior Zoe C. Ashwood Aditi Jha 1,3, Jonathan W. Pillow Princeton Neuroscience Institute, Princeton University
Understanding decision-making is a core objective in both neuroscience and psychology, and computational models have often been helpful in the pursuit of this goal. While many models have been developed for characterizing behavior in binary decision-making and bandit tasks, comparatively little work has focused on animal decision-making in more complex tasks, such as navigation through a maze. Inverse reinforcement learning (IRL) is a promising approach for understanding such behavior, as it aims to infer the unknown reward function of an agent from its observed trajectories through state space. However, IRL has yet to be widely applied in neuroscience. One potential reason for this is that existing IRL frameworks assume that an agent's reward function is fixed over time.
Supplementary: Subsidiary Prototype Alignment for Universal Domain Adaptation
In this appendix, we provide more details of our approach, extensive implementation details, additional analyses, limitations and potential negative societal impact. Towards reproducible research, we will publicly release our complete codebase and trained network weights on our webpage. We summarize the notations used throughout the paper in Table 1. The notations are listed under 5 groups i.e. models, datasets, samples, spaces and measures. The proposed approach may be unsuitable for datasets with very less number of classes.
Subsidiary Prototype Alignment for Universal Domain Adaptation
The goal is to categorize unlabeled target samples, either into one of the "known" categories or into a single "unknown" category. A major problem in UniDA is negative transfer, i.e. misalignment of "known" and "unknown" classes. To this end, we first uncover an intriguing tradeoff between negative-transfer-risk and domaininvariance exhibited at different layers of a deep network. It turns out we can strike a balance between these two metrics at a mid-level layer. Towards designing an effective framework based on this insight, we draw motivation from Bag-of-visual-Words (BoW). Word-prototypes in a BoW-like representation of a mid-level layer would represent lower-level visual primitives that are likely to be unaffected by the category-shift in the high-level features. We develop modifications that encourage learning of word-prototypes followed by word-histogram based classification. Following this, subsidiary prototype-space alignment (SPA) can be seen as a closedset alignment problem, thereby avoiding negative transfer. We realize this with a novel word-histogram-related pretext task to enable closed-set SPA, operating in conjunction with goal task UniDA.
The Bayesian sampling in a canonical recurrent circuit with a diversity of inhibitory interneurons
Accumulating evidence suggests stochastic cortical circuits can perform samplingbased Bayesian inference to compute the latent stimulus posterior. Canonical cortical circuits consist of excitatory (E) neurons and types of inhibitory (I) interneurons. Nevertheless, nearly no sampling neural circuit models consider the diversity of interneurons, and thus how interneurons contribute to sampling remains poorly understood. To provide theoretical insight, we build a nonlinear canonical circuit model consisting of recurrently connected E neurons and two types of I neurons including Parvalbumin (PV) and Somatostatin (SOM) neurons. The E neurons are modeled as a canonical ring (attractor) model, receiving global inhibition from PV neurons, and locally tuning-dependent inhibition from SOM neurons. We theoretically analyze the nonlinear circuit dynamics and analytically identify the Bayesian sampling algorithm performed by the circuit dynamics. We found a reduced circuit with only E and PV neurons performs Langevin sampling, and the inclusion of SOM neurons with tuning-dependent inhibition speeds up the sampling via upgrading the Langevin into Hamiltonian sampling. Moreover, the Hamiltonian framework requires SOM neurons to receive no direct feedforward connections, consistent with neuroanatomy. Our work provides overarching connections between nonlinear circuits with various types of interneurons and sampling algorithms, deepening our understanding of circuit implementation of Bayesian inference.
Maximum State Entropy Exploration using Predecessor and Successor Representations
Animals have a developed ability to explore that aids them in important tasks such as locating food, exploring for shelter, and finding misplaced items. These exploration skills necessarily track where they have been so that they can plan for finding items with relative efficiency. Contemporary exploration algorithms often learn a less efficient exploration strategy because they either condition only on the current state or simply rely on making random open-loop exploratory moves. In this work, we propose ηψ-Learning, a method to learn efficient exploratory policies by conditioning on past episodic experience to make the next exploratory move. Specifically, ηψ-Learning learns an exploration policy that maximizes the entropy of the state visitation distribution of a single trajectory. Furthermore, we demonstrate how variants of the predecessor representation and successor representations can be combined to predict the state visitation entropy. Our experiments demonstrate the efficacy of ηψ-Learning to strategically explore the environment and maximize the state coverage with limited samples.