Dynamic Inverse Reinforcement Learning for Characterizing Animal Behavior Zoe C. Ashwood Aditi Jha 1,3, Jonathan W. Pillow Princeton Neuroscience Institute, Princeton University

Neural Information Processing Systems 

Understanding decision-making is a core objective in both neuroscience and psychology, and computational models have often been helpful in the pursuit of this goal. While many models have been developed for characterizing behavior in binary decision-making and bandit tasks, comparatively little work has focused on animal decision-making in more complex tasks, such as navigation through a maze. Inverse reinforcement learning (IRL) is a promising approach for understanding such behavior, as it aims to infer the unknown reward function of an agent from its observed trajectories through state space. However, IRL has yet to be widely applied in neuroscience. One potential reason for this is that existing IRL frameworks assume that an agent's reward function is fixed over time.