Goto

Collaborating Authors

 Communications: Overviews


The FIX Benchmark: Extracting Features Interpretable to eXperts

arXiv.org Artificial Intelligence

Feature-based methods are commonly used to explain model predictions, but these methods often implicitly assume that interpretable features are readily available. However, this is often not the case for high-dimensional data, and it can be hard even for domain experts to mathematically specify which features are important. Can we instead automatically extract collections or groups of features that are aligned with expert knowledge? To address this gap, we present FIX (Features Interpretable to eXperts), a benchmark for measuring how well a collection of features aligns with expert knowledge. In collaboration with domain experts, we propose FIXScore, a unified expert alignment measure applicable to diverse real-world settings across cosmology, psychology, and medicine domains in vision, language, and time series data modalities. With FIXScore, we find that popular feature-based explanation methods have poor alignment with expert-specified knowledge, highlighting the need for new methods that can better identify features interpretable to experts.


Emoji Retrieval from Gibberish or Garbled Social Media Text: A Novel Methodology and A Case Study

arXiv.org Artificial Intelligence

Emojis are widely used across social media platforms but are often lost in noisy or garbled text, posing challenges for data analysis and machine learning. Conventional preprocessing approaches recommend removing such text, risking the loss of emojis and their contextual meaning. This paper proposes a three-step reverse-engineering methodology to retrieve emojis from garbled text in social media posts. The methodology also identifies reasons for the generation of such text during social media data mining. To evaluate its effectiveness, the approach was applied to 509,248 Tweets about the Mpox outbreak, a dataset referenced in about 30 prior works that failed to retrieve emojis from garbled text. Our method retrieved 157,748 emojis from 76,914 Tweets. Improvements in text readability and coherence were demonstrated through metrics such as Flesch Reading Ease, Flesch-Kincaid Grade Level, Coleman-Liau Index, Automated Readability Index, Dale-Chall Readability Score, Text Standard, and Reading Time. Additionally, the frequency of individual emojis and their patterns of usage in these Tweets were analyzed, and the results are presented.


Semantic Web: Past, Present, and Future

arXiv.org Artificial Intelligence

Ever since the vision was formulated, the Semantic Web has inspired many generations of innovations. Semantic technologies have been used to share vast amounts of information on the Web, enhance them with semantics to give them meaning, and enable inference and reasoning on them. Throughout the years, semantic technologies, and in particular knowledge graphs, have been used in search engines, data integration, enterprise settings, and machine learning. In this paper, we recap the classical concepts and foundations of the Semantic Web as well as modern and recent concepts and applications, building upon these foundations. The classical topics we cover include knowledge representation, creating and validating knowledge on the Web, reasoning and linking, and distributed querying. We enhance this classical view of the so-called ``Semantic Web Layer Cake'' with an update of recent concepts that include provenance, security and trust, as well as a discussion of practical impacts from industry-led contributions. We conclude with an outlook on the future directions of the Semantic Web.


DragonVerseQA: Open-Domain Long-Form Context-Aware Question-Answering

arXiv.org Artificial Intelligence

This paper proposes a novel approach to develop an open-domain and long-form Over-The-Top (OTT) Question-Answering (QA) dataset, DragonVerseQA, specifically oriented to the fantasy universe of "House of the Dragon" and "Game Of Thrones" TV series. Most existing QA datasets focus on short, fact-based answers sourced almost solely from Wikipedia articles, devoid of depth and contextual richness for sophisticated narrative understanding. We curate a dataset that combines full episode summaries sourced from HBO and fandom wiki websites, user reviews from sources like IMDb and Rotten Tomatoes, and high-quality, open-domain, legally admissible sources, and structured data from repositories like WikiData into one dataset. The dataset provides a multi-dimensional context, reflecting complex character dynamics and plot developments from these varied sources. That means, on equal footing, only after heavy data preprocessing and filtering methods will meaningful, non-spam unbiased reviews be available in this enriched dataset. The comprehensive insights are given through the long-form answers generated from this enriched context. This is what makes this valuable dataset for improving conversational AI, narrative analysis, sentiment analysis, summarization techniques, and relation extraction. A comparative analysis with state-of-the-art QA datasets such as SQuAD 2.0, TriviaQA, and Natural Questions brings to light the unique advantages of our dataset in terms of contextual complexity and answer length. Detailed reviews add layers to audience sentiment and narrative interpretation, raising the bar for domain-specific QA with a new quality benchmark. Our work also allows a deeper understanding of entertainment-industry content and opens the door to more knowledgeable and creative AI-driven interactions within digital media environments.


Social Science Is Necessary for Operationalizing Socially Responsible Foundation Models

arXiv.org Artificial Intelligence

With the rise of foundation models, there is growing concern about their potential social impacts. Social science has a long history of studying the social impacts of transformative technologies in terms of pre-existing systems of power and how these systems are disrupted or reinforced by new technologies. In this position paper, we build on prior work studying the social impacts of earlier technologies to propose a conceptual framework studying foundation models as sociotechnical systems, incorporating social science expertise to better understand how these models affect systems of power, anticipate the impacts of deploying these models in various applications, and study the effectiveness of technical interventions intended to mitigate social harms. We advocate for an interdisciplinary and collaborative research paradigm between AI and social science across all stages of foundation model research and development to promote socially responsible research practices and use cases, and outline several strategies to facilitate such research.


Navigating AI to Unpack Youth Privacy Concerns: An In-Depth Exploration and Systematic Review

arXiv.org Artificial Intelligence

This systematic literature review investigates perceptions, concerns, and expectations of young digital citizens regarding privacy in artificial intelligence (AI) systems, focusing on social media platforms, educational technology, gaming systems, and recommendation algorithms. Using a rigorous methodology, the review started with 2,000 papers, narrowed down to 552 after initial screening, and finally refined to 108 for detailed analysis. Data extraction focused on privacy concerns, data-sharing practices, the balance between privacy and utility, trust factors in AI, transparency expectations, and strategies to enhance user control over personal data. Findings reveal significant privacy concerns among young users, including a perceived lack of control over personal information, potential misuse of data by AI, and fears of data breaches and unauthorized access. These issues are worsened by unclear data collection practices and insufficient transparency in AI applications. The intention to share data is closely associated with perceived benefits and data protection assurances. The study also highlights the role of parental mediation and the need for comprehensive education on data privacy. Balancing privacy and utility in AI applications is crucial, as young digital citizens value personalized services but remain wary of privacy risks. Trust in AI is significantly influenced by transparency, reliability, predictable behavior, and clear communication about data usage. Strategies to improve user control over personal data include access to and correction of data, clear consent mechanisms, and robust data protection assurances. The review identifies research gaps and suggests future directions, such as longitudinal studies, multicultural comparisons, and the development of ethical AI frameworks.


Creation of AI-driven Smart Spaces for Enhanced Indoor Environments -- A Survey

arXiv.org Artificial Intelligence

Smart spaces are ubiquitous computing environments that integrate diverse sensing and communication technologies to enhance space functionality, optimize energy utilization, and improve user comfort and well-being. The integration of emerging AI methodologies into these environments facilitates the formation of AI-driven smart spaces, which further enhance functionalities of the spaces by enabling advanced applications such as personalized comfort settings, interactive living spaces, and automatization of the space systems, all resulting in enhanced indoor experiences of the users. In this paper, we present a systematic survey of existing research on the foundational components of AI-driven smart spaces, including sensor technologies, data communication protocols, sensor network management and maintenance strategies, as well as the data collection, processing and analytics. Given the pivotal role of AI in establishing AI-powered smart spaces, we explore the opportunities and challenges associated with traditional machine learning (ML) approaches, such as deep learning (DL), and emerging methodologies including large language models (LLMs). Finally, we provide key insights necessary for the development of AI-driven smart spaces, propose future research directions, and sheds light on the path forward.


Exploiting sparse structures and synergy designs to advance situational awareness of electrical power grid

arXiv.org Artificial Intelligence

The growing threats of uncertainties, anomalies, and cyberattacks on power grids are driving a critical need to advance situational awareness which allows system operators to form a complete and accurate picture of the present and future state. Simulation and estimation are foundational tools in this process. However, existing tools lack the robustness and efficiency required to achieve the level of situational awareness needed for the ever-evolving threat landscape. Industry-standard (steady-state) simulators are not robust to blackouts, often leading to non-converging or non-actionable results. Estimation tools lack robustness to anomalous data, returning erroneous system states. Efficiency is the other major concern as nonlinearities and scalability issues make large systems slow to converge. This thesis addresses robustness and efficiency gaps through a dual-fold contribution. We first address the inherent limitations in the existing physics-based and data-driven worlds; and then transcend the boundaries of conventional algorithmic design in the direction of a new paradigm -- Physics-ML Synergy -- which integrates the strengths of the two worlds. Our approaches are built on circuit formulation which provides a unified framework that applies to both transmission and distribution. Sparse optimization acts as the key enabler to make these tools intrinsically robust and immune to random threats, pinpointing dominant sources of (random) blackouts and data errors. Further, we explore sparsity-exploiting optimizations to develop lightweight ML models whose prediction and detection capabilities are a complement to physics-based tools; and whose lightweight designs advance generalization and scalability. Finally, Physics-ML Synergy brings robustness and efficiency further against targeted cyberthreats, by interconnecting our physics-based tools with lightweight ML.


Unleashing the Power of Continual Learning on Non-Centralized Devices: A Survey

arXiv.org Artificial Intelligence

Non-Centralized Continual Learning (NCCL) has become an emerging paradigm for enabling distributed devices such as vehicles and servers to handle streaming data from a joint non-stationary environment. To achieve high reliability and scalability in deploying this paradigm in distributed systems, it is essential to conquer challenges stemming from both spatial and temporal dimensions, manifesting as distribution shifts, catastrophic forgetting, heterogeneity, and privacy issues. This survey focuses on a comprehensive examination of the development of the non-centralized continual learning algorithms and the real-world deployment across distributed devices. We begin with an introduction to the background and fundamentals of non-centralized learning and continual learning. Then, we review existing solutions from three levels to represent how existing techniques alleviate the catastrophic forgetting and distribution shift. Additionally, we delve into the various types of heterogeneity issues, security, and privacy attributes, as well as real-world applications across three prevalent scenarios. Furthermore, we establish a large-scale benchmark to revisit this problem and analyze the performance of the state-of-the-art NCCL approaches. Finally, we discuss the important challenges and future research directions in NCCL.


Distributed satellite information networks: Architecture, enabling technologies, and trends

arXiv.org Artificial Intelligence

Driven by the vision of ubiquitous connectivity and wireless intelligence, the evolution of ultra-dense constellation-based satellite-integrated Internet is underway, now taking preliminary shape. Nevertheless, the entrenched institutional silos and limited, nonrenewable heterogeneous network resources leave current satellite systems struggling to accommodate the escalating demands of next-generation intelligent applications. In this context, the distributed satellite information networks (DSIN), exemplified by the cohesive clustered satellites system, have emerged as an innovative architecture, bridging information gaps across diverse satellite systems, such as communication, navigation, and remote sensing, and establishing a unified, open information network paradigm to support resilient space information services. This survey first provides a profound discussion about innovative network architectures of DSIN, encompassing distributed regenerative satellite network architecture, distributed satellite computing network architecture, and reconfigurable satellite formation flying, to enable flexible and scalable communication, computing and control. The DSIN faces challenges from network heterogeneity, unpredictable channel dynamics, sparse resources, and decentralized collaboration frameworks. To address these issues, a series of enabling technologies is identified, including channel modeling and estimation, cloud-native distributed MIMO cooperation, grant-free massive access, network routing, and the proper combination of all these diversity techniques. Furthermore, to heighten the overall resource efficiency, the cross-layer optimization techniques are further developed to meet upper-layer deterministic, adaptive and secure information services requirements. In addition, emerging research directions and new opportunities are highlighted on the way to achieving the DSIN vision.