Communications: Overviews
Optimizing Power Grid Topologies with Reinforcement Learning: A Survey of Methods and Challenges
van der Sar, Erica, Zocca, Alessandro, Bhulai, Sandjai
Power grid operation is becoming increasingly complex due to the rising integration of renewable energy sources and the need for more adaptive control strategies. Reinforcement Learning (RL) has emerged as a promising approach to power network control (PNC), offering the potential to enhance decision-making in dynamic and uncertain environments. The Learning To Run a Power Network (L2RPN) competitions have played a key role in accelerating research by providing standardized benchmarks and problem formulations, leading to rapid advancements in RL-based methods. This survey provides a comprehensive and structured overview of RL applications for power grid topology optimization, categorizing existing techniques, highlighting key design choices, and identifying gaps in current research. Additionally, we present a comparative numerical study evaluating the impact of commonly applied RL-based methods, offering insights into their practical effectiveness. By consolidating existing research and outlining open challenges, this survey aims to provide a foundation for future advancements in RL-driven power grid optimization.
Towards Mobile Sensing with Event Cameras on High-agility Resource-constrained Devices: A Survey
Wang, Haoyang, Guo, Ruishan, Ma, Pengtao, Ruan, Ciyu, Luo, Xinyu, Ding, Wenhua, Zhong, Tianyang, Xu, Jingao, Liu, Yunhao, Chen, Xinlei
With the increasing complexity of mobile device applications, these devices are evolving toward high agility. This shift imposes new demands on mobile sensing, particularly in terms of achieving high accuracy and low latency. Event-based vision has emerged as a disruptive paradigm, offering high temporal resolution, low latency, and energy efficiency, making it well-suited for high-accuracy and low-latency sensing tasks on high-agility platforms. However, the presence of substantial noisy events, the lack of inherent semantic information, and the large data volume pose significant challenges for event-based data processing on resource-constrained mobile devices. This paper surveys the literature over the period 2014-2024, provides a comprehensive overview of event-based mobile sensing systems, covering fundamental principles, event abstraction methods, algorithmic advancements, hardware and software acceleration strategies. We also discuss key applications of event cameras in mobile sensing, including visual odometry, object tracking, optical flow estimation, and 3D reconstruction, while highlighting the challenges associated with event data processing, sensor fusion, and real-time deployment. Furthermore, we outline future research directions, such as improving event camera hardware with advanced optics, leveraging neuromorphic computing for efficient processing, and integrating bio-inspired algorithms to enhance perception. To support ongoing research, we provide an open-source \textit{Online Sheet} with curated resources and recent developments. We hope this survey serves as a valuable reference, facilitating the adoption of event-based vision across diverse applications.
DiffuPac: Contextual Mimicry in Adversarial Packets Generation via Diffusion Model
In domains of cybersecurity, recent advancements in Machine Learning (ML) and Deep Learning (DL) have significantly enhanced Network Intrusion Detection Systems (NIDS), improving the effectiveness of cybersecurity operations. However, attackers have also leveraged ML/DL to develop sophisticated models that generate adversarial packets capable of evading NIDS detection. Consequently, defenders must study and analyze these models to prepare for the evasion attacks that exploit NIDS detection mechanisms. Unfortunately, conventional generation models often rely on unrealistic assumptions about attackers' knowledge of NIDS components, making them impractical for real-world scenarios. To address this issue, we present DiffuPac, a first-of-its-kind generation model designed to generate adversarial packets that evade detection without relying on specific NIDS components. DiffuPac integrates a pre-trained Bidirectional Encoder Representations from Transformers (BERT) with diffusion model, which, through its capability for conditional denoising and classifier-free guidance, effectively addresses the real-world constraint of limited attacker knowledge. By concatenating malicious packets with contextually relevant normal packets and applying targeted noising only to the malicious packets, DiffuPac seamlessly blends adversarial packets into genuine network traffic. Through evaluations on real-world datasets, we demonstrate that DiffuPac achieves strong evasion capabilities against sophisticated NIDS, outperforming conventional methods by an average of 6.69 percentage points, while preserving the functionality and practicality of the generated adversarial packets.
Sample Selection via Contrastive Fragmentation for Noisy Label Regression Chris Dongjoo Kim 1,2 Dongyeon Woo
As with many other problems, real-world regression is plagued by the presence of noisy labels, an inevitable issue that demands our attention. Fortunately, much real-world data often exhibits an intrinsic property of continuously ordered correlations between labels and features, where data points with similar labels are also represented with closely related features. In response, we propose a novel approach named ConFrag, where we collectively model the regression data by transforming them into disjoint yet contrasting fragmentation pairs. This enables the training of more distinctive representations, enhancing the ability to select clean samples. Our ConFrag framework leverages a mixture of neighboring fragments to discern noisy labels through neighborhood agreement among expert feature extractors. We extensively perform experiments on six newly curated benchmark datasets of diverse domains, including age prediction, price prediction, and music production year estimation. We also introduce a metric called Error Residual Ratio (ERR) to better account for varying degrees of label noise. Our approach consistently outperforms fourteen state-of-the-art baselines, being robust against symmetric and random Gaussian label noise.
A Synthetic Dataset for Personal Attribute Inference Hanna Yukhymenko
Recently powerful Large Language Models (LLMs) have become easily accessible to hundreds of millions of users world-wide. However, their strong capabilities and vast world knowledge do not come without associated privacy risks. In this work, we focus on the emerging privacy threat LLMs pose - the ability to accurately infer personal information from online texts. Despite the growing importance of LLM-based author profiling, research in this area has been hampered by a lack of suitable public datasets, largely due to ethical and privacy concerns associated with real personal data. We take two steps to address this problem: (i) we construct a simulation framework for the popular social media platform Reddit using LLM agents seeded with synthetic personal profiles; (ii) using this framework, we generate SynthPAI, a diverse synthetic dataset of over 7800 comments manually labeled for personal attributes. We validate our dataset with a human study showing that humans barely outperform random guessing on the task of distinguishing our synthetic comments from real ones. Further, we verify that our dataset enables meaningful personal attribute inference research by showing across 18 state-of-theart LLMs that our synthetic comments allow us to draw the same conclusions as real-world data. Combined, our experimental results, dataset and pipeline form a strong basis for future privacy-preserving research geared towards understanding and mitigating inference-based privacy threats that LLMs pose.
Supplementary Material Infer Induced Sentiment of Comment Response to Video: A New Task, Dataset and Baseline 1 Lu Liu
This section provides a comprehensive overview of the CSMV dataset. The CSMV dataset comprises micro videos and their corresponding comments, which have been updated from February 2020 to October 2022. This extensive time range allows for the inclusion of a diverse set of content, capturing the evolution of sentiments over the course of more than two years. In total, the CSMV dataset comprises 8,210 micro videos, totaling approximately 68.83 hours of video duration, along with 107,267 related comments. The CSMV dataset defines two distinct types of labels, opinion and emotion, for analyzing the sentiment expressed in the comments towards the micro videos. By leveraging the combination of video and textual content in this dataset, researchers can examine the interaction between language expressions and visual cues in sentiment analysis. To deepen our understanding of the CSMV dataset, we performed an analysis of the distribution of videos and related comments using specific hashtags. As depicted in Figure 1, this distribution exhibits a rich diversity of topics in video content. This diversity has brought rich expression of sentiment in user comments, giving the CSMV dataset an advantage in comprehending the complexity of induced sentiment. Moreover, this diversity expands the application of the dataset for multimodal sentiment analysis tasks.