Goto

Collaborating Authors

 Zuccon, Guido


Pseudo-Relevance Feedback Can Improve Zero-Shot LLM-Based Dense Retrieval

arXiv.org Artificial Intelligence

Recent advances in language modelling have been motivated the Pseudo-relevance feedback (PRF) refines queries by leveraging initially replacement of encoder-only backbones like BERT with larger retrieved documents to improve retrieval effectiveness. In this decoder-only backbones (generative LLMs) to form dense representations paper, we investigate how large language models (LLMs) can facilitate [2, 13, 23], allowing to leverage richer contextual information PRF for zero-shot LLM-based dense retrieval, extending the and enhancing dense retrieval generalization. Of particular recently proposed PromptReps method. Specifically, our approach interest for this paper is PromptReps [23], an LLM-based approach uses LLMs to extract salient passage features--such as keywords for dense retrieval. PromptReps is unique in that it does not require and summaries--from top-ranked documents, which are then integrated contrastive learning, producing effective representations for dense into PromptReps to produce enhanced query representations.


Rank-R1: Enhancing Reasoning in LLM-based Document Rerankers via Reinforcement Learning

arXiv.org Artificial Intelligence

In this paper, we introduce Rank-R1, a novel LLM-based reranker that performs reasoning over both the user query and candidate documents before performing the ranking task. Existing document reranking methods based on large language models (LLMs) typically rely on prompting or fine-tuning LLMs to order or label candidate documents according to their relevance to a query. For Rank-R1, we use a reinforcement learning algorithm along with only a small set of relevance labels (without any reasoning supervision) to enhance the reasoning ability of LLM-based rerankers. Our hypothesis is that adding reasoning capabilities to the rerankers can improve their relevance assessement and ranking capabilities. Our experiments on the TREC DL and BRIGHT datasets show that Rank-R1 is highly effective, especially for complex queries. In particular, we find that Rank-R1 achieves effectiveness on in-domain datasets at par with that of supervised fine-tuning methods, but utilizing only 18\% of the training data used by the fine-tuning methods. We also find that the model largely outperforms zero-shot and supervised fine-tuning when applied to out-of-domain datasets featuring complex queries, especially when a 14B-size model is used. Finally, we qualitatively observe that Rank-R1's reasoning process improves the explainability of the ranking results, opening new opportunities for search engine results presentation and fruition.


Leveraging Semantic Type Dependencies for Clinical Named Entity Recognition

arXiv.org Artificial Intelligence

Previous work on clinical relation extraction from free-text sentences leveraged information about semantic types from clinical knowledge bases as a part of entity representations. In this paper, we exploit additional evidence by also making use of domain-specific semantic type dependencies. We encode the relation between a span of tokens matching a Unified Medical Language System (UMLS) concept and other tokens in the sentence. We implement our method and compare against different named entity recognition (NER) architectures (i.e., BiLSTM-CRF and BiLSTM-GCN-CRF) using different pre-trained clinical embeddings (i.e., BERT, BioBERT, UMLSBert). Our experimental results on clinical datasets show that in some cases NER effectiveness can be significantly improved by making use of domain-specific semantic type dependencies. Our work is also the first study generating a matrix encoding to make use of more than three dependencies in one pass for the NER task.


2D Matryoshka Training for Information Retrieval

arXiv.org Artificial Intelligence

2D Matryoshka Training is an advanced embedding representation training approach designed to train an encoder model simultaneously across various layer-dimension setups. This method has demonstrated higher effectiveness in Semantic Text Similarity (STS) tasks over traditional training approaches when using sub-layers for embeddings. Despite its success, discrepancies exist between two published implementations, leading to varied comparative results with baseline models. In this reproducibility study, we implement and evaluate both versions of 2D Matryoshka Training on STS tasks and extend our analysis to retrieval tasks. Our findings indicate that while both versions achieve higher effectiveness than traditional Matryoshka training on sub-dimensions, and traditional full-sized model training approaches, they do not outperform models trained separately on specific sub-layer and sub-dimension setups. Moreover, these results generalize well to retrieval tasks, both in supervised (MSMARCO) and zero-shot (BEIR) settings. Further explorations of different loss computations reveals more suitable implementations for retrieval tasks, such as incorporating full-dimension loss and training on a broader range of target dimensions. Conversely, some intuitive approaches, such as fixing document encoders to full model outputs, do not yield improvements. Our reproduction code is available at https://github.com/ielab/2DMSE-Reproduce.


An Investigation of Prompt Variations for Zero-shot LLM-based Rankers

arXiv.org Artificial Intelligence

We provide a systematic understanding of the impact of specific components and wordings used in prompts on the effectiveness of rankers based on zero-shot Large Language Models (LLMs). Several zero-shot ranking methods based on LLMs have recently been proposed. Among many aspects, methods differ across (1) the ranking algorithm they implement, e.g., pointwise vs. listwise, (2) the backbone LLMs used, e.g., GPT3.5 vs. FLAN-T5, (3) the components and wording used in prompts, e.g., the use or not of role-definition (role-playing) and the actual words used to express this. It is currently unclear whether performance differences are due to the underlying ranking algorithm, or because of spurious factors such as better choice of words used in prompts. This confusion risks to undermine future research. Through our large-scale experimentation and analysis, we find that ranking algorithms do contribute to differences between methods for zero-shot LLM ranking. However, so do the LLM backbones -- but even more importantly, the choice of prompt components and wordings affect the ranking. In fact, in our experiments, we find that, at times, these latter elements have more impact on the ranker's effectiveness than the actual ranking algorithms, and that differences among ranking methods become more blurred when prompt variations are considered.


Understanding and Mitigating the Threat of Vec2Text to Dense Retrieval Systems

arXiv.org Artificial Intelligence

The introduction of Vec2Text, a technique for inverting text embeddings, has raised serious privacy concerns within dense retrieval systems utilizing text embeddings, including those provided by OpenAI and Cohere. This threat comes from the ability for a malicious attacker with access to text embeddings to reconstruct the original text. In this paper, we investigate various aspects of embedding models that could influence the recoverability of text using Vec2Text. Our exploration involves factors such as distance metrics, pooling functions, bottleneck pre-training, training with noise addition, embedding quantization, and embedding dimensions -- aspects not previously addressed in the original Vec2Text paper. Through a thorough analysis of these factors, our aim is to gain a deeper understanding of the critical elements impacting the trade-offs between text recoverability and retrieval effectiveness in dense retrieval systems. This analysis provides valuable insights for practitioners involved in designing privacy-aware dense retrieval systems. Additionally, we propose a straightforward fix for embedding transformation that ensures equal ranking effectiveness while mitigating the risk of text recoverability. Furthermore, we extend the application of Vec2Text to the separate task of corpus poisoning, where, theoretically, Vec2Text presents a more potent threat compared to previous attack methods. Notably, Vec2Text does not require access to the dense retriever's model parameters and can efficiently generate numerous adversarial passages. In summary, this study highlights the potential threat posed by Vec2Text to existing dense retrieval systems, while also presenting effective methods to patch and strengthen such systems against such risks.


ReSLLM: Large Language Models are Strong Resource Selectors for Federated Search

arXiv.org Artificial Intelligence

Federated search, which involves integrating results from multiple independent search engines, will become increasingly pivotal in the context of Retrieval-Augmented Generation pipelines empowering LLM-based applications such as chatbots. These systems often distribute queries among various search engines, ranging from specialized (e.g., PubMed) to general (e.g., Google), based on the nature of user utterances. A critical aspect of federated search is resource selection - the selection of appropriate resources prior to issuing the query to ensure high-quality and rapid responses, and contain costs associated with calling the external search engines. However, current SOTA resource selection methodologies primarily rely on feature-based learning approaches. These methods often involve the labour intensive and expensive creation of training labels for each resource. In contrast, LLMs have exhibited strong effectiveness as zero-shot methods across NLP and IR tasks. We hypothesise that in the context of federated search LLMs can assess the relevance of resources without the need for extensive predefined labels or features. In this paper, we propose ReSLLM. Our ReSLLM method exploits LLMs to drive the selection of resources in federated search in a zero-shot setting. In addition, we devise an unsupervised fine tuning protocol, the Synthetic Label Augmentation Tuning (SLAT), where the relevance of previously logged queries and snippets from resources is predicted using an off-the-shelf LLM and then in turn used to fine-tune ReSLLM with respect to resource selection. Our empirical evaluation and analysis details the factors influencing the effectiveness of LLMs in this context. The results showcase the merits of ReSLLM for resource selection: not only competitive effectiveness in the zero-shot setting, but also obtaining large when fine-tuned using SLAT-protocol.


Zero-shot Generative Large Language Models for Systematic Review Screening Automation

arXiv.org Artificial Intelligence

Systematic reviews are crucial for evidence-based medicine as they comprehensively analyse published research findings on specific questions. Conducting such reviews is often resource- and time-intensive, especially in the screening phase, where abstracts of publications are assessed for inclusion in a review. This study investigates the effectiveness of using zero-shot large language models~(LLMs) for automatic screening. We evaluate the effectiveness of eight different LLMs and investigate a calibration technique that uses a predefined recall threshold to determine whether a publication should be included in a systematic review. Our comprehensive evaluation using five standard test collections shows that instruction fine-tuning plays an important role in screening, that calibration renders LLMs practical for achieving a targeted recall, and that combining both with an ensemble of zero-shot models saves significant screening time compared to state-of-the-art approaches.


How to Forget Clients in Federated Online Learning to Rank?

arXiv.org Artificial Intelligence

Data protection legislation like the European Union's General Data Protection Regulation (GDPR) establishes the \textit{right to be forgotten}: a user (client) can request contributions made using their data to be removed from learned models. In this paper, we study how to remove the contributions made by a client participating in a Federated Online Learning to Rank (FOLTR) system. In a FOLTR system, a ranker is learned by aggregating local updates to the global ranking model. Local updates are learned in an online manner at a client-level using queries and implicit interactions that have occurred within that specific client. By doing so, each client's local data is not shared with other clients or with a centralised search service, while at the same time clients can benefit from an effective global ranking model learned from contributions of each client in the federation. In this paper, we study an effective and efficient unlearning method that can remove a client's contribution without compromising the overall ranker effectiveness and without needing to retrain the global ranker from scratch. A key challenge is how to measure whether the model has unlearned the contributions from the client $c^*$ that has requested removal. For this, we instruct $c^*$ to perform a poisoning attack (add noise to this client updates) and then we measure whether the impact of the attack is lessened when the unlearning process has taken place. Through experiments on four datasets, we demonstrate the effectiveness and efficiency of the unlearning strategy under different combinations of parameter settings.


Generating Natural Language Queries for More Effective Systematic Review Screening Prioritisation

arXiv.org Artificial Intelligence

Screening prioritisation in medical systematic reviews aims to rank the set of documents retrieved by complex Boolean queries. Prioritising the most important documents ensures that subsequent review steps can be carried out more efficiently and effectively. The current state of the art uses the final title of the review as a query to rank the documents using BERT-based neural rankers. However, the final title is only formulated at the end of the review process, which makes this approach impractical as it relies on ex post facto information. At the time of screening, only a rough working title is available, with which the BERT-based ranker performs significantly worse than with the final title. In this paper, we explore alternative sources of queries for prioritising screening, such as the Boolean query used to retrieve the documents to be screened and queries generated by instruction-based generative large-scale language models such as ChatGPT and Alpaca. Our best approach is not only viable based on the information available at the time of screening, but also has similar effectiveness to the final title.