Yuan, Yifei
Revisiting the Othello World Model Hypothesis
Yuan, Yifei, Søgaard, Anders
Li et al. (2023) used the Othello board game as a test case for the ability of GPT-2 to induce world models, and were followed up by Nanda et al. (2023b). We briefly discuss the original experiments, expanding them to include more language models with more comprehensive probing. Specifically, we analyze sequences of Othello board states and train the model to predict the next move based on previous moves. We evaluate seven language models (GPT-2, T5, Bart, Flan-T5, Mistral, LLaMA-2, and Qwen2.5) on the Othello task and conclude that these models not only learn to play Othello, but also induce the Othello board layout. We find that all models achieve up to 99% accuracy in unsupervised grounding and exhibit high similarity in the board features they learned. This provides considerably stronger evidence for the Othello World Model Hypothesis than previous works. Li et al. (2023) used the Othello board game to probe the ability of LLMs to induce world models. Their network had a 60-word input vocabulary, corresponding to the 64 tiles of an Othello board, except for the four that are already filled at the start. They trained the network on two datasets: one on about 140,000 real Othello games and another on millions of synthetic games. They then trained 64 independent non-linear probes (two-layer MLP classifiers) to classify each of the 64 tiles into three states: black, blank, and white, using internal representations from Othello-GPT as input.
Multi-Turn Multi-Modal Question Clarification for Enhanced Conversational Understanding
Ramezan, Kimia, Bavandpour, Alireza Amiri, Yuan, Yifei, Siro, Clemencia, Aliannejadi, Mohammad
Conversational query clarification enables users to refine their search queries through interactive dialogue, improving search effectiveness. Traditional approaches rely on text-based clarifying questions, which often fail to capture complex user preferences, particularly those involving visual attributes. While recent work has explored single-turn multi-modal clarification with images alongside text, such methods do not fully support the progressive nature of user intent refinement over multiple turns. Motivated by this, we introduce the Multi-turn Multi-modal Clarifying Questions (MMCQ) task, which combines text and visual modalities to refine user queries in a multi-turn conversation. To facilitate this task, we create a large-scale dataset named ClariMM comprising over 13k multi-turn interactions and 33k question-answer pairs containing multi-modal clarifying questions. We propose Mario, a retrieval framework that employs a two-phase ranking strategy: initial retrieval with BM25, followed by a multi-modal generative re-ranking model that integrates textual and visual information from conversational history. Our experiments show that multi-turn multi-modal clarification outperforms uni-modal and single-turn approaches, improving MRR by 12.88%. The gains are most significant in longer interactions, demonstrating the value of progressive refinement for complex queries.
AGENT-CQ: Automatic Generation and Evaluation of Clarifying Questions for Conversational Search with LLMs
Siro, Clemencia, Yuan, Yifei, Aliannejadi, Mohammad, de Rijke, Maarten
Generating diverse and effective clarifying questions is crucial for improving query understanding and retrieval performance in open-domain conversational search (CS) systems. We propose AGENT-CQ (Automatic GENeration, and evaluaTion of Clarifying Questions), an end-to-end LLM-based framework addressing the challenges of scalability and adaptability faced by existing methods that rely on manual curation or template-based approaches. AGENT-CQ consists of two stages: a generation stage employing LLM prompting strategies to generate clarifying questions, and an evaluation stage (CrowdLLM) that simulates human crowdsourcing judgments using multiple LLM instances to assess generated questions and answers based on comprehensive quality metrics. Extensive experiments on the ClariQ dataset demonstrate CrowdLLM's effectiveness in evaluating question and answer quality. Human evaluation and CrowdLLM show that the AGENT-CQ - generation stage, consistently outperforms baselines in various aspects of question and answer quality. In retrieval-based evaluation, LLM-generated questions significantly enhance retrieval effectiveness for both BM25 and cross-encoder models compared to human-generated questions.
Unlocking Markets: A Multilingual Benchmark to Cross-Market Question Answering
Yuan, Yifei, Deng, Yang, Søgaard, Anders, Aliannejadi, Mohammad
Users post numerous product-related questions on e-commerce platforms, affecting their purchase decisions. Product-related question answering (PQA) entails utilizing product-related resources to provide precise responses to users. We propose a novel task of Multilingual Cross-market Product-based Question Answering (MCPQA) and define the task as providing answers to product-related questions in a main marketplace by utilizing information from another resource-rich auxiliary marketplace in a multilingual context. We introduce a large-scale dataset comprising over 7 million questions from 17 marketplaces across 11 languages. We then perform automatic translation on the Electronics category of our dataset, naming it as McMarket. We focus on two subtasks: review-based answer generation and product-related question ranking. For each subtask, we label a subset of McMarket using an LLM and further evaluate the quality of the annotations via human assessment. We then conduct experiments to benchmark our dataset, using models ranging from traditional lexical models to LLMs in both single-market and cross-market scenarios across McMarket and the corresponding LLM subset. Results show that incorporating cross-market information significantly enhances performance in both tasks.
Towards Fine-Grained Citation Evaluation in Generated Text: A Comparative Analysis of Faithfulness Metrics
Zhang, Weijia, Aliannejadi, Mohammad, Yuan, Yifei, Pei, Jiahuan, Huang, Jia-Hong, Kanoulas, Evangelos
Large language models (LLMs) often produce unsupported or unverifiable information, known as "hallucinations." To mitigate this, retrieval-augmented LLMs incorporate citations, grounding the content in verifiable sources. Despite such developments, manually assessing how well a citation supports the associated statement remains a major challenge. Previous studies use faithfulness metrics to estimate citation support automatically but are limited to binary classification, overlooking fine-grained citation support in practical scenarios. To investigate the effectiveness of faithfulness metrics in fine-grained scenarios, we propose a comparative evaluation framework that assesses the metric effectiveness in distinguishinging citations between three-category support levels: full, partial, and no support. Our framework employs correlation analysis, classification evaluation, and retrieval evaluation to measure the alignment between metric scores and human judgments comprehensively. Our results show no single metric consistently excels across all evaluations, revealing the complexity of assessing fine-grained support. Based on the findings, we provide practical recommendations for developing more effective metrics.
FoodieQA: A Multimodal Dataset for Fine-Grained Understanding of Chinese Food Culture
Li, Wenyan, Zhang, Xinyu, Li, Jiaang, Peng, Qiwei, Tang, Raphael, Zhou, Li, Zhang, Weijia, Hu, Guimin, Yuan, Yifei, Søgaard, Anders, Hershcovich, Daniel, Elliott, Desmond
Beijing Chaoshan Food is a rich and varied dimension of cultural heritage, crucial to both individuals and social groups. To bridge the gap in the literature on the often-overlooked regional diversity in this domain, we introduce FoodieQA, a manually curated, fine-grained image-text dataset capturing the intricate features of food cultures across various regions in China. We evaluate vision-language Models (VLMs) and large language models (LLMs) on newly collected, unseen food images and corresponding questions. FoodieQA comprises three multiplechoice question-answering tasks where models need to answer questions based on multiple images, Sichuan Guangdong a single image, and text-only descriptions, Figure 1: An example of regional food differences in respectively. While LLMs excel at text-based referring to hotpot in China. The depicted soups and question answering, surpassing human accuracy, dishware visually reflect the ingredients, flavors, and the open-weights VLMs still fall short by traditions of these regions: Beijing in the north, Sichuan 41% on multi-image and 21% on single-image in the southwest, and Guangdong in the south coast. VQA tasks, although closed-weights models perform closer to human levels (within 10%).
CO3: Low-resource Contrastive Co-training for Generative Conversational Query Rewrite
Yuan, Yifei, Shi, Chen, Wang, Runze, Chen, Liyi, Hu, Renjun, Zhang, Zengming, Jiang, Feijun, Lam, Wai
Generative query rewrite generates reconstructed query rewrites using the conversation history while rely heavily on gold rewrite pairs that are expensive to obtain. Recently, few-shot learning is gaining increasing popularity for this task, whereas these methods are sensitive to the inherent noise due to limited data size. Besides, both attempts face performance degradation when there exists language style shift between training and testing cases. To this end, we study low-resource generative conversational query rewrite that is robust to both noise and language style shift. The core idea is to utilize massive unlabeled data to make further improvements via a contrastive co-training paradigm. Specifically, we co-train two dual models (namely Rewriter and Simplifier) such that each of them provides extra guidance through pseudo-labeling for enhancing the other in an iterative manner. We also leverage contrastive learning with data augmentation, which enables our model pay more attention on the truly valuable information than the noise. Extensive experiments demonstrate the superiority of our model under both few-shot and zero-shot scenarios. We also verify the better generalization ability of our model when encountering language style shift.
On the Multi-turn Instruction Following for Conversational Web Agents
Deng, Yang, Zhang, Xuan, Zhang, Wenxuan, Yuan, Yifei, Ng, See-Kiong, Chua, Tat-Seng
Web agents powered by Large Language Models (LLMs) have demonstrated remarkable abilities in planning and executing multi-step interactions within complex web-based environments, fulfilling a wide range of web navigation tasks. Despite these advancements, the potential for LLM-powered agents to effectively engage with sequential user instructions in real-world scenarios has not been fully explored. In this work, we introduce a new task of Conversational Web Navigation, which necessitates sophisticated interactions that span multiple turns with both the users and the environment, supported by a specially developed dataset named Multi-Turn Mind2Web (MT-Mind2Web). To tackle the limited context length of LLMs and the context-dependency issue of the conversational tasks, we further propose a novel framework, named self-reflective memory-augmented planning (Self-MAP), which employs memory utilization and self-reflection techniques. Extensive experiments are conducted to benchmark the MT-Mind2Web dataset, and validate the effectiveness of the proposed method.
Asking Multimodal Clarifying Questions in Mixed-Initiative Conversational Search
Yuan, Yifei, Siro, Clemencia, Aliannejadi, Mohammad, de Rijke, Maarten, Lam, Wai
In mixed-initiative conversational search systems, clarifying questions are used to help users who struggle to express their intentions in a single query. These questions aim to uncover user's information needs and resolve query ambiguities. We hypothesize that in scenarios where multimodal information is pertinent, the clarification process can be improved by using non-textual information. Therefore, we propose to add images to clarifying questions and formulate the novel task of asking multimodal clarifying questions in open-domain, mixed-initiative conversational search systems. To facilitate research into this task, we collect a dataset named Melon that contains over 4k multimodal clarifying questions, enriched with over 14k images. We also propose a multimodal query clarification model named Marto and adopt a prompt-based, generative fine-tuning strategy to perform the training of different stages with different prompts. Several analyses are conducted to understand the importance of multimodal contents during the query clarification phase. Experimental results indicate that the addition of images leads to significant improvements of up to 90% in retrieval performance when selecting the relevant images. Extensive analyses are also performed to show the superiority of Marto compared with discriminative baselines in terms of effectiveness and efficiency.
Exploring Visual Culture Awareness in GPT-4V: A Comprehensive Probing
Cao, Yong, Li, Wenyan, Li, Jiaang, Yuan, Yifei, Hershcovich, Daniel
Pretrained large Vision-Language models have drawn considerable interest in recent years due to their remarkable performance. Despite considerable efforts to assess these models from diverse perspectives, the extent of visual cultural awareness in the state-of-the-art GPT-4V model remains unexplored. To tackle this gap, we extensively probed GPT-4V using the MaRVL benchmark dataset, aiming to investigate its capabilities and limitations in visual understanding with a focus on cultural aspects. Specifically, we introduced three visual related tasks, i.e. caption classification, pairwise captioning, and culture tag selection, to systematically delve into fine-grained visual cultural evaluation. Experimental results indicate that GPT-4V excels at identifying cultural concepts but still exhibits weaker performance in low-resource languages, such as Tamil and Swahili. Notably, through human evaluation, GPT-4V proves to be more culturally relevant in image captioning tasks than the original MaRVL human annotations, suggesting a promising solution for future visual cultural benchmark construction.