Xu, Runsheng
CoCMT: Communication-Efficient Cross-Modal Transformer for Collaborative Perception
Wang, Rujia, Gao, Xiangbo, Xiang, Hao, Xu, Runsheng, Tu, Zhengzhong
Multi-agent collaborative perception enhances each agent perceptual capabilities by sharing sensing information to cooperatively perform robot perception tasks. This approach has proven effective in addressing challenges such as sensor deficiencies, occlusions, and long-range perception. However, existing representative collaborative perception systems transmit intermediate feature maps, such as bird-eye view (BEV) representations, which contain a significant amount of non-critical information, leading to high communication bandwidth requirements. To enhance communication efficiency while preserving perception capability, we introduce CoCMT, an object-query-based collaboration framework that optimizes communication bandwidth by selectively extracting and transmitting essential features. Within CoCMT, we introduce the Efficient Query Transformer (EQFormer) to effectively fuse multi-agent object queries and implement a synergistic deep supervision to enhance the positive reinforcement between stages, leading to improved overall performance. Experiments on OPV2V and V2V4Real datasets show CoCMT outperforms state-of-the-art methods while drastically reducing communication needs. On V2V4Real, our model (Top-50 object queries) requires only 0.416 Mb bandwidth, 83 times less than SOTA methods, while improving AP70 by 1.1 percent. This efficiency breakthrough enables practical collaborative perception deployment in bandwidth-constrained environments without sacrificing detection accuracy.
STAMP: Scalable Task And Model-agnostic Collaborative Perception
Gao, Xiangbo, Xu, Runsheng, Li, Jiachen, Wang, Ziran, Fan, Zhiwen, Tu, Zhengzhong
Perception is a crucial component of autonomous driving systems. However, single-agent setups often face limitations due to sensor constraints, especially under challenging conditions like severe occlusion, adverse weather, and long-range object detection. Multi-agent collaborative perception (CP) offers a promising solution that enables communication and information sharing between connected vehicles. Yet, the heterogeneity among agents--in terms of sensors, models, and tasks--significantly hinders effective and efficient cross-agent collaboration. To address these challenges, we propose STAMP, a scalable task-and model-agnostic collaborative perception framework tailored for heterogeneous agents. STAMP utilizes lightweight adapter-reverter pairs to transform Bird's Eye View (BEV) features between agent-specific domains and a shared protocol domain, facilitating efficient feature sharing and fusion while minimizing computational overhead. Moreover, our approach enhances scalability, preserves model security, and accommodates a diverse range of agents. Extensive experiments on both simulated (OPV2V) and real-world (V2V4Real) datasets demonstrate that STAMP achieves comparable or superior accuracy to state-of-the-art models with significantly reduced computational costs. As the first-of-its-kind task-and model-agnostic collaborative perception framework, STAMP aims to advance research in scalable and secure mobility systems, bringing us closer to Level 5 autonomy. Our project page is at https://xiangbogaobarry.github.io/STAMP Multi-agent collaborative perception (CP) (Bai et al., 2022b; Han et al., 2023; Liu et al., 2023) has emerged as a promising solution for autonomous systems by leveraging communication among multiple connected and automated agents. It enables agents--such as vehicles, infrastructure, or even pedestrians--to share sensory and perceptual information, providing a more comprehensive view of the surrounding environment to enhance overall perception capabilities. Despite its potential, CP faces significant challenges, particularly when dealing with heterogeneous agents that defer in input modalities, model parameters, architectures, or learning objectives.
EMMA: End-to-End Multimodal Model for Autonomous Driving
Hwang, Jyh-Jing, Xu, Runsheng, Lin, Hubert, Hung, Wei-Chih, Ji, Jingwei, Choi, Kristy, Huang, Di, He, Tong, Covington, Paul, Sapp, Benjamin, Zhou, Yin, Guo, James, Anguelov, Dragomir, Tan, Mingxing
We introduce EMMA, an End-to-end Multimodal Model for Autonomous driving. Built on a multi-modal large language model foundation, EMMA directly maps raw camera sensor data into various driving-specific outputs, including planner trajectories, perception objects, and road graph elements. EMMA maximizes the utility of world knowledge from the pre-trained large language models, by representing all non-sensor inputs (e.g. navigation instructions and ego vehicle status) and outputs (e.g. trajectories and 3D locations) as natural language text. This approach allows EMMA to jointly process various driving tasks in a unified language space, and generate the outputs for each task using task-specific prompts. Empirically, we demonstrate EMMA's effectiveness by achieving state-of-the-art performance in motion planning on nuScenes as well as competitive results on the Waymo Open Motion Dataset (WOMD). EMMA also yields competitive results for camera-primary 3D object detection on the Waymo Open Dataset (WOD). We show that co-training EMMA with planner trajectories, object detection, and road graph tasks yields improvements across all three domains, highlighting EMMA's potential as a generalist model for autonomous driving applications. However, EMMA also exhibits certain limitations: it can process only a small amount of image frames, does not incorporate accurate 3D sensing modalities like LiDAR or radar and is computationally expensive. We hope that our results will inspire further research to mitigate these issues and to further evolve the state of the art in autonomous driving model architectures.
Breaking Data Silos: Cross-Domain Learning for Multi-Agent Perception from Independent Private Sources
Li, Jinlong, Li, Baolu, Liu, Xinyu, Xu, Runsheng, Ma, Jiaqi, Yu, Hongkai
The diverse agents in multi-agent perception systems may be from different companies. Each company might use the identical classic neural network architecture based encoder for feature extraction. However, the data source to train the various agents is independent and private in each company, leading to the Distribution Gap of different private data for training distinct agents in multi-agent perception system. The data silos by the above Distribution Gap could result in a significant performance decline in multi-agent perception. In this paper, we thoroughly examine the impact of the distribution gap on existing multi-agent perception systems. To break the data silos, we introduce the Feature Distribution-aware Aggregation (FDA) framework for cross-domain learning to mitigate the above Distribution Gap in multi-agent perception. FDA comprises two key components: Learnable Feature Compensation Module and Distribution-aware Statistical Consistency Module, both aimed at enhancing intermediate features to minimize the distribution gap among multi-agent features. Intensive experiments on the public OPV2V and V2XSet datasets underscore FDA's effectiveness in point cloud-based 3D object detection, presenting it as an invaluable augmentation to existing multi-agent perception systems.
Diffusion Models: A Comprehensive Survey of Methods and Applications
Yang, Ling, Zhang, Zhilong, Song, Yang, Hong, Shenda, Xu, Runsheng, Zhao, Yue, Zhang, Wentao, Cui, Bin, Yang, Ming-Hsuan
Diffusion models have emerged as a powerful new family of deep generative models with record-breaking performance in many applications, including image synthesis, video generation, and molecule design. In this survey, we provide an overview of the rapidly expanding body of work on diffusion models, categorizing the research into three key areas: efficient sampling, improved likelihood estimation, and handling data with special structures. We also discuss the potential for combining diffusion models with other generative models for enhanced results. We further review the wide-ranging applications of diffusion models in fields spanning from computer vision, natural language generation, temporal data modeling, to interdisciplinary applications in other scientific disciplines. This survey aims to provide a contextualized, in-depth look at the state of diffusion models, identifying the key areas of focus and pointing to potential areas for further exploration. Github: https://github.com/YangLing0818/Diffusion-Models-Papers-Survey-Taxonomy.
DUSA: Decoupled Unsupervised Sim2Real Adaptation for Vehicle-to-Everything Collaborative Perception
Kong, Xianghao, Jiang, Wentao, Jia, Jinrang, Shi, Yifeng, Xu, Runsheng, Liu, Si
Vehicle-to-Everything (V2X) collaborative perception is crucial for autonomous driving. However, achieving high-precision V2X perception requires a significant amount of annotated real-world data, which can always be expensive and hard to acquire. Simulated data have raised much attention since they can be massively produced at an extremely low cost. Nevertheless, the significant domain gap between simulated and real-world data, including differences in sensor type, reflectance patterns, and road surroundings, often leads to poor performance of models trained on simulated data when evaluated on real-world data. In addition, there remains a domain gap between real-world collaborative agents, e.g. different types of sensors may be installed on autonomous vehicles and roadside infrastructures with different extrinsics, further increasing the difficulty of sim2real generalization. To take full advantage of simulated data, we present a new unsupervised sim2real domain adaptation method for V2X collaborative detection named Decoupled Unsupervised Sim2Real Adaptation (DUSA). Our new method decouples the V2X collaborative sim2real domain adaptation problem into two sub-problems: sim2real adaptation and inter-agent adaptation. For sim2real adaptation, we design a Location-adaptive Sim2Real Adapter (LSA) module to adaptively aggregate features from critical locations of the feature map and align the features between simulated data and real-world data via a sim/real discriminator on the aggregated global feature. For inter-agent adaptation, we further devise a Confidence-aware Inter-agent Adapter (CIA) module to align the fine-grained features from heterogeneous agents under the guidance of agent-wise confidence maps. Experiments demonstrate the effectiveness of the proposed DUSA approach on unsupervised sim2real adaptation from the simulated V2XSet dataset to the real-world DAIR-V2X-C dataset.
Optimizing the Placement of Roadside LiDARs for Autonomous Driving
Jiang, Wentao, Xiang, Hao, Cai, Xinyu, Xu, Runsheng, Ma, Jiaqi, Li, Yikang, Lee, Gim Hee, Liu, Si
Multi-agent cooperative perception is an increasingly popular topic in the field of autonomous driving, where roadside LiDARs play an essential role. However, how to optimize the placement of roadside LiDARs is a crucial but often overlooked problem. This paper proposes an approach to optimize the placement of roadside LiDARs by selecting optimized positions within the scene for better perception performance. To efficiently obtain the best combination of locations, a greedy algorithm based on perceptual gain is proposed, which selects the location that can maximize the perceptual gain sequentially. We define perceptual gain as the increased perceptual capability when a new LiDAR is placed. To obtain the perception capability, we propose a perception predictor that learns to evaluate LiDAR placement using only a single point cloud frame. A dataset named Roadside-Opt is created using the CARLA simulator to facilitate research on the roadside LiDAR placement problem.
Learning for Vehicle-to-Vehicle Cooperative Perception under Lossy Communication
Li, Jinlong, Xu, Runsheng, Liu, Xinyu, Ma, Jin, Chi, Zicheng, Ma, Jiaqi, Yu, Hongkai
Deep learning has been widely used in the perception (e.g., 3D object detection) of intelligent vehicle driving. Due to the beneficial Vehicle-to-Vehicle (V2V) communication, the deep learning based features from other agents can be shared to the ego vehicle so as to improve the perception of the ego vehicle. It is named as Cooperative Perception in the V2V research, whose algorithms have been dramatically advanced recently. However, all the existing cooperative perception algorithms assume the ideal V2V communication without considering the possible lossy shared features because of the Lossy Communication (LC) which is common in the complex real-world driving scenarios. In this paper, we first study the side effect (e.g., detection performance drop) by the lossy communication in the V2V Cooperative Perception, and then we propose a novel intermediate LC-aware feature fusion method to relieve the side effect of lossy communication by a LC-aware Repair Network (LCRN) and enhance the interaction between the ego vehicle and other vehicles by a specially designed V2V Attention Module (V2VAM) including intra-vehicle attention of ego vehicle and uncertainty-aware inter-vehicle attention. The extensive experiment on the public cooperative perception dataset OPV2V (based on digital-twin CARLA simulator) demonstrates that the proposed method is quite effective for the cooperative point cloud based 3D object detection under lossy V2V communication.
V2XP-ASG: Generating Adversarial Scenes for Vehicle-to-Everything Perception
Xiang, Hao, Xu, Runsheng, Xia, Xin, Zheng, Zhaoliang, Zhou, Bolei, Ma, Jiaqi
Recent advancements in Vehicle-to-Everything communication technology have enabled autonomous vehicles to share sensory information to obtain better perception performance. With the rapid growth of autonomous vehicles and intelligent infrastructure, the V2X perception systems will soon be deployed at scale, which raises a safety-critical question: \textit{how can we evaluate and improve its performance under challenging traffic scenarios before the real-world deployment?} Collecting diverse large-scale real-world test scenes seems to be the most straightforward solution, but it is expensive and time-consuming, and the collections can only cover limited scenarios. To this end, we propose the first open adversarial scene generator V2XP-ASG that can produce realistic, challenging scenes for modern LiDAR-based multi-agent perception systems. V2XP-ASG learns to construct an adversarial collaboration graph and simultaneously perturb multiple agents' poses in an adversarial and plausible manner. The experiments demonstrate that V2XP-ASG can effectively identify challenging scenes for a large range of V2X perception systems. Meanwhile, by training on the limited number of generated challenging scenes, the accuracy of V2X perception systems can be further improved by 12.3\% on challenging and 4\% on normal scenes. Our code will be released at https://github.com/XHwind/V2XP-ASG.
Model-Agnostic Multi-Agent Perception Framework
Xu, Runsheng, Chen, Weizhe, Xiang, Hao, Liu, Lantao, Ma, Jiaqi
Existing multi-agent perception systems assume that every agent utilizes the same model with identical parameters and architecture. The performance can be degraded with different perception models due to the mismatch in their confidence scores. In this work, we propose a model-agnostic multi-agent perception framework to reduce the negative effect caused by the model discrepancies without sharing the model information. Specifically, we propose a confidence calibrator that can eliminate the prediction confidence score bias. Each agent performs such calibration independently on a standard public database to protect intellectual property. We also propose a corresponding bounding box aggregation algorithm that considers the confidence scores and the spatial agreement of neighboring boxes. Our experiments shed light on the necessity of model calibration across different agents, and the results show that the proposed framework improves the baseline 3D object detection performance of heterogeneous agents.