Xu, Chunpu
MIO: A Foundation Model on Multimodal Tokens
Wang, Zekun, Zhu, King, Xu, Chunpu, Zhou, Wangchunshu, Liu, Jiaheng, Zhang, Yibo, Wang, Jiashuo, Shi, Ning, Li, Siyu, Li, Yizhi, Que, Haoran, Zhang, Zhaoxiang, Zhang, Yuanxing, Zhang, Ge, Xu, Ke, Fu, Jie, Huang, Wenhao
In this paper, we introduce MIO, a novel foundation model built on multimodal tokens, capable of understanding and generating speech, text, images, and videos in an end-to-end, autoregressive manner. While the emergence of large language models (LLMs) and multimodal large language models (MM-LLMs) propels advancements in artificial general intelligence through their versatile capabilities, they still lack true any-to-any understanding and generation. Recently, the release of GPT-4o has showcased the remarkable potential of any-to-any LLMs for complex real-world tasks, enabling omnidirectional input and output across images, speech, and text. However, it is closed-source and does not support the generation of multimodal interleaved sequences. To address this gap, we present MIO, which is trained on a mixture of discrete tokens across four modalities using causal multimodal modeling. Our experimental results indicate that MIO exhibits competitive, and in some cases superior, performance compared to previous dual-modal baselines, any-to-any model baselines, and even modality-specific baselines. Moreover, MIO demonstrates advanced capabilities inherent to its any-to-any feature, such as interleaved video-text generation, chain-of-visual-thought reasoning, visual guideline generation, instructional image editing, etc. Codes and models are available at https://github.com/MIO-Team/MIO. The advent of Large Language Models (LLMs) is commonly considered the dawn of artificial general intelligence (AGI) (OpenAI et al., 2023; Bubeck et al., 2023), given their generalist capabilities such as complex reasoning (Wei et al., 2022), role playing (Wang et al., 2023c), and creative writing (Wang et al., 2024a). These MM-LLMs typically involve an external multimodal encoder, such as EVA-CLIP (Sun et al., 2023b) or CLAP (Elizalde et al., 2022), with an alignment module such as Q-Former (Li et al., 2023b) or MLP (Liu et al., 2023b) for multimodal understanding. These modules align non-textual-modality data features into the embedding space of the LLM backbone. Another line of work involves building any-to-any and end-to-end MM-LLMs that can input and output non-textual modality data. I/O Consistency indicates whether the model ensures that the input and output representations for the same data remain consistent. SFT refers to whether the model undergoes a unified (Uni.)
Towards a Client-Centered Assessment of LLM Therapists by Client Simulation
Wang, Jiashuo, Xiao, Yang, Li, Yanran, Song, Changhe, Xu, Chunpu, Tan, Chenhao, Li, Wenjie
Although there is a growing belief that LLMs can be used as therapists, exploring LLMs' capabilities and inefficacy, particularly from the client's perspective, is limited. This work focuses on a client-centered assessment of LLM therapists with the involvement of simulated clients, a standard approach in clinical medical education. However, there are two challenges when applying the approach to assess LLM therapists at scale. Ethically, asking humans to frequently mimic clients and exposing them to potentially harmful LLM outputs can be risky and unsafe. Technically, it can be difficult to consistently compare the performances of different LLM therapists interacting with the same client. To this end, we adopt LLMs to simulate clients and propose ClientCAST, a client-centered approach to assessing LLM therapists by client simulation. Specifically, the simulated client is utilized to interact with LLM therapists and complete questionnaires related to the interaction. Based on the questionnaire results, we assess LLM therapists from three client-centered aspects: session outcome, therapeutic alliance, and self-reported feelings. We conduct experiments to examine the reliability of ClientCAST and use it to evaluate LLMs therapists implemented by Claude-3, GPT-3.5, LLaMA3-70B, and Mixtral 8*7B. Codes are released at https://github.com/wangjs9/ClientCAST.
PopALM: Popularity-Aligned Language Models for Social Media Trendy Response Prediction
Yu, Erxin, Li, Jing, Xu, Chunpu
Social media platforms are daily exhibiting millions of events. To preliminarily predict the mainstream public reaction to these events, we study trendy response prediction to automatically generate top-liked user replies to social media events. While previous works focus on generating responses without factoring in popularity, we propose Popularity-Aligned Language Models (PopALM) to distinguish responses liked by a larger audience through reinforcement learning. Recognizing the noisy labels from user "likes", we tailor-make curriculum learning in proximal policy optimization (PPO) to help models capture the essential samples for easy-to-hard training. In experiments, we build a large-scale Weibo dataset for trendy response prediction, and its results show that PopALM can help boost the performance of advanced language models.
Mitigating Unhelpfulness in Emotional Support Conversations with Multifaceted AI Feedback
Wang, Jiashuo, Xu, Chunpu, Leong, Chak Tou, Li, Wenjie, Li, Jing
An emotional support conversation system aims to alleviate users' emotional distress and assist them in addressing their challenges. To generate supportive responses, it is critical to consider multiple factors such as empathy, support strategies, and response coherence, as established in prior methods. Nonetheless, previous models occasionally generate unhelpful responses, which intend to provide support but display counterproductive effects. According to psychology and communication theories, poor performance in just one contributing factor might cause a response to be unhelpful. From the model training perspective, since these models have not been exposed to unhelpful responses during their training phase, they are unable to distinguish if the tokens they generate might result in unhelpful responses during inference. To address this issue, we introduce a novel model-agnostic framework named mitigating unhelpfulness with multifaceted AI feedback for emotional support (Muffin). Specifically, Muffin employs a multifaceted AI feedback module to assess the helpfulness of responses generated by a specific model with consideration of multiple factors. Using contrastive learning, it then reduces the likelihood of the model generating unhelpful responses compared to the helpful ones. Experimental results demonstrate that Muffin effectively mitigates the generation of unhelpful responses while slightly increasing response fluency and relevance.
CMMMU: A Chinese Massive Multi-discipline Multimodal Understanding Benchmark
Zhang, Ge, Du, Xinrun, Chen, Bei, Liang, Yiming, Luo, Tongxu, Zheng, Tianyu, Zhu, Kang, Cheng, Yuyang, Xu, Chunpu, Guo, Shuyue, Zhang, Haoran, Qu, Xingwei, Wang, Junjie, Yuan, Ruibin, Li, Yizhi, Wang, Zekun, Liu, Yudong, Tsai, Yu-Hsuan, Zhang, Fengji, Lin, Chenghua, Huang, Wenhao, Chen, Wenhu, Fu, Jie
As the capabilities of large multimodal models (LMMs) continue to advance, evaluating the performance of LMMs emerges as an increasing need. Additionally, there is an even larger gap in evaluating the advanced knowledge and reasoning abilities of LMMs in non-English contexts such as Chinese. We introduce CMMMU, a new Chinese Massive Multi-discipline Multimodal Understanding benchmark designed to evaluate LMMs on tasks demanding college-level subject knowledge and deliberate reasoning in a Chinese context. CMMMU is inspired by and strictly follows the annotation and analysis pattern of MMMU. CMMMU includes 12k manually collected multimodal questions from college exams, quizzes, and textbooks, covering six core disciplines: Art & Design, Business, Science, Health & Medicine, Humanities & Social Science, and Tech & Engineering, like its companion, MMMU. These questions span 30 subjects and comprise 39 highly heterogeneous image types, such as charts, diagrams, maps, tables, music sheets, and chemical structures. CMMMU focuses on complex perception and reasoning with domain-specific knowledge in the Chinese context. We evaluate 11 open-source LLMs and one proprietary GPT-4V(ision). Even GPT-4V only achieves accuracies of 42%, indicating a large space for improvement. CMMMU will boost the community to build the next-generation LMMs towards expert artificial intelligence and promote the democratization of LMMs by providing diverse language contexts.
Align on the Fly: Adapting Chatbot Behavior to Established Norms
Xu, Chunpu, Chern, Steffi, Chern, Ethan, Zhang, Ge, Wang, Zekun, Liu, Ruibo, Li, Jing, Fu, Jie, Liu, Pengfei
In this paper, we aim to align large language models with the ever-changing, complex, and diverse human values (e.g., social norms) across time and locations. This presents a challenge to existing alignment techniques, such as supervised fine-tuning, which internalize values within model parameters. To overcome this, we propose an On-the-fly Preference Optimization (OPO) method, which is a real-time alignment that works in a streaming way. It employs an external memory to store established rules for alignment, which can constrain LLMs' behaviors without further training, allowing for convenient updates and customization of human values. We also introduce a scalable evaluation to assess the proposed method more effectively. Experimental results on both human-annotated and auto-generated questions from legal and moral domains indicate the effectiveness of the proposed OPO method. Our code and data are released at https://github.com/GAIR-NLP/OPO.
HICL: Hashtag-Driven In-Context Learning for Social Media Natural Language Understanding
Tan, Hanzhuo, Xu, Chunpu, Li, Jing, Zhang, Yuqun, Fang, Zeyang, Chen, Zeyu, Lai, Baohua
Natural language understanding (NLU) is integral to various social media applications. However, existing NLU models rely heavily on context for semantic learning, resulting in compromised performance when faced with short and noisy social media content. To address this issue, we leverage in-context learning (ICL), wherein language models learn to make inferences by conditioning on a handful of demonstrations to enrich the context and propose a novel hashtag-driven in-context learning (HICL) framework. Concretely, we pre-train a model #Encoder, which employs #hashtags (user-annotated topic labels) to drive BERT-based pre-training through contrastive learning. Our objective here is to enable #Encoder to gain the ability to incorporate topic-related semantic information, which allows it to retrieve topic-related posts to enrich contexts and enhance social media NLU with noisy contexts. To further integrate the retrieved context with the source text, we employ a gradient-based method to identify trigger terms useful in fusing information from both sources. For empirical studies, we collected 45M tweets to set up an in-context NLU benchmark, and the experimental results on seven downstream tasks show that HICL substantially advances the previous state-of-the-art results. Furthermore, we conducted extensive analyzes and found that: (1) combining source input with a top-retrieved post from #Encoder is more effective than using semantically similar posts; (2) trigger words can largely benefit in merging context from the source and retrieved posts.
Topic-Guided Self-Introduction Generation for Social Media Users
Xu, Chunpu, Li, Jing, Li, Piji, Yang, Min
Millions of users are active on social media. To allow users to better showcase themselves and network with others, we explore the auto-generation of social media self-introduction, a short sentence outlining a user's personal interests. While most prior work profiles users with tags (e.g., ages), we investigate sentence-level self-introductions to provide a more natural and engaging way for users to know each other. Here we exploit a user's tweeting history to generate their self-introduction. The task is non-trivial because the history content may be lengthy, noisy, and exhibit various personal interests. To address this challenge, we propose a novel unified topic-guided encoder-decoder (UTGED) framework; it models latent topics to reflect salient user interest, whose topic mixture then guides encoding a user's history and topic words control decoding their self-introduction. For experiments, we collect a large-scale Twitter dataset, and extensive results show the superiority of our UTGED to the advanced encoder-decoder models without topic modeling.
Borrowing Human Senses: Comment-Aware Self-Training for Social Media Multimodal Classification
Xu, Chunpu, Li, Jing
Social media is daily creating massive multimedia content with paired image and text, presenting the pressing need to automate the vision and language understanding for various multimodal classification tasks. Compared to the commonly researched visual-lingual data, social media posts tend to exhibit more implicit image-text relations. To better glue the cross-modal semantics therein, we capture hinting features from user comments, which are retrieved via jointly leveraging visual and lingual similarity. Afterwards, the classification tasks are explored via self-training in a teacher-student framework, motivated by the usually limited labeled data scales in existing benchmarks. Substantial experiments are conducted on four multimodal social media benchmarks for image text relation classification, sarcasm detection, sentiment classification, and hate speech detection. The results show that our method further advances the performance of previous state-of-the-art models, which do not employ comment modeling or self-training.
Understanding Social Media Cross-Modality Discourse in Linguistic Space
Xu, Chunpu, Tan, Hanzhuo, Li, Jing, Li, Piji
The multimedia communications with texts and images are popular on social media. However, limited studies concern how images are structured with texts to form coherent meanings in human cognition. To fill in the gap, we present a novel concept of cross-modality discourse, reflecting how human readers couple image and text understandings. Text descriptions are first derived from images (named as subtitles) in the multimedia contexts. Five labels -- entity-level insertion, projection and concretization and scene-level restatement and extension -- are further employed to shape the structure of subtitles and texts and present their joint meanings. As a pilot study, we also build the very first dataset containing 16K multimedia tweets with manually annotated discourse labels. The experimental results show that the multimedia encoder based on multi-head attention with captions is able to obtain the-state-of-the-art results.