Whiteson, Daniel


Searching for Higgs Boson Decay Modes with Deep Learning

Neural Information Processing Systems

Particle colliders enable us to probe the fundamental nature of matter by observing exotic particles produced by high-energy collisions. Because the experimental measurements from these collisions are necessarily incomplete and imprecise, machine learning algorithms play a major role in the analysis of experimental data. The high-energy physics community typically relies on standardized machine learning software packages for this analysis, and devotes substantial effort towards improving statistical power by hand crafting high-level features derived from the raw collider measurements. In this paper, we train artificial neural networks to detect the decay of the Higgs boson to tau leptons on a dataset of 82 million simulated collision events. We demonstrate that deep neural network architectures are particularly well-suited for this task with the ability to automatically discover high-level features from the data and increase discovery significance.


Decorrelated Jet Substructure Tagging using Adversarial Neural Networks

arXiv.org Machine Learning

We describe a strategy for constructing a neural network jet substructure tagger which powerfully discriminates boosted decay signals while remaining largely uncorrelated with the jet mass. This reduces the impact of systematic uncertainties in background modeling while enhancing signal purity, resulting in improved discovery significance relative to existing taggers. The network is trained using an adversarial strategy, resulting in a tagger that learns to balance classification accuracy with decorrelation. As a benchmark scenario, we consider the case where large-radius jets originating from a boosted resonance decay are discriminated from a background of nonresonant quark and gluon jets. We show that in the presence of systematic uncertainties on the background rate, our adversarially-trained, decorrelated tagger considerably outperforms a conventionally trained neural network, despite having a slightly worse signal-background separation power. We generalize the adversarial training technique to include a parametric dependence on the signal hypothesis, training a single network that provides optimized, interpolatable decorrelated jet tagging across a continuous range of hypothetical resonance masses, after training on discrete choices of the signal mass.


Searching for Higgs Boson Decay Modes with Deep Learning

Neural Information Processing Systems

Particle colliders enable us to probe the fundamental nature of matter by observing exotic particles produced by high-energy collisions. Because the experimental measurements from these collisions are necessarily incomplete and imprecise, machine learning algorithms play a major role in the analysis of experimental data. The high-energy physics community typically relies on standardized machine learning software packages for this analysis, and devotes substantial effort towards improving statistical power by hand crafting high-level features derived from the raw collider measurements. In this paper, we train artificial neural networks to detect the decay of the Higgs boson to tau leptons on a dataset of 82 million simulated collision events. We demonstrate that deep neural network architectures are particularly well-suited for this task with the ability to automatically discover high-level features from the data and increase discovery significance.