Plotting

 Vödisch, Niclas


FSOCO: The Formula Student Objects in Context Dataset

arXiv.org Artificial Intelligence

This paper presents the FSOCO dataset, a collaborative dataset for vision-based cone detection systems in Formula Student Driverless competitions. It contains human annotated ground truth labels for both bounding boxes and instance-wise segmentation masks. The data buy-in philosophy of FSOCO asks student teams to contribute to the database first before being granted access ensuring continuous growth. By providing clear labeling guidelines and tools for a sophisticated raw image selection, new annotations are guaranteed to meet the desired quality. The effectiveness of the approach is shown by comparing prediction results of a network trained on FSOCO and its unregulated predecessor. The FSOCO dataset can be found at https://fsoco.github.io/fsoco-dataset/.


Collaborative Dynamic 3D Scene Graphs for Open-Vocabulary Urban Scene Understanding

arXiv.org Artificial Intelligence

Mapping and scene representation are fundamental to reliable planning and navigation in mobile robots. While purely geometric maps using voxel grids allow for general navigation, obtaining up-to-date spatial and semantically rich representations that scale to dynamic large-scale environments remains challenging. In this work, we present CURB-OSG, an open-vocabulary dynamic 3D scene graph engine that generates hierarchical decompositions of urban driving scenes via multi-agent collaboration. By fusing the camera and LiDAR observations from multiple perceiving agents with unknown initial poses, our approach generates more accurate maps compared to a single agent while constructing a unified open-vocabulary semantic hierarchy of the scene. Unlike previous methods that rely on ground truth agent poses or are evaluated purely in simulation, CURB-OSG alleviates these constraints. We evaluate the capabilities of CURB-OSG on real-world multi-agent sensor data obtained from multiple sessions of the Oxford Radar RobotCar dataset. We demonstrate improved mapping and object prediction accuracy through multi-agent collaboration as well as evaluate the environment partitioning capabilities of the proposed approach. To foster further research, we release our code and supplementary material at https://ov-curb.cs.uni-freiburg.de.


LiDAR Registration with Visual Foundation Models

arXiv.org Artificial Intelligence

LiDAR Registration with Visual Foundation Models Niclas V odisch 1,2, Giovanni Cioffi 2, Marco Cannici 2, Wolfram Burgard 3, and Davide Scaramuzza 2 1 University of Freiburg 2 University of Zurich 3 University of Technology Nuremberg Abstract --LiDAR registration is a fundamental task in robotic mapping and localization. A critical component of aligning two point clouds is identifying robust point correspondences using point descriptors. This step becomes particularly challenging in scenarios involving domain shifts, seasonal changes, and variations in point cloud structures. In this paper, we address these problems by proposing to use DINOv2 features, obtained from surround-view images, as point descriptors. We demonstrate that coupling these descriptors with traditional registration algorithms, such as RANSAC or ICP, facilitates robust 6DoF alignment of LiDAR scans with 3D maps, even when the map was recorded more than a year before. Although conceptually straightforward, our method substantially outperforms more complex baseline techniques. In contrast to previous learning-based point descriptors, our method does not require domain-specific retraining and is agnostic to the point cloud structure, effectively handling both sparse LiDAR scans and dense 3D maps. We show that leveraging the additional camera data enables our method to outperform the best baseline by +24.8 and +17. 3 registration recall on the NCL T and Oxford RobotCar datasets. We publicly release the registration benchmark and the code of our work on https://vfm-registration.cs.uni-freiburg.de. I NTRODUCTION Aligning two point clouds to compute their relative 3D transformation is a critical task in numerous robotic applications, including LiDAR odometry [30], loop closure registration [2], and map-based localization [19]. In this work, we specifically discuss map-based localization, which not only generalizes the other aforementioned tasks but is also critical for improving the efficiency and autonomy of mobile robots in environments where pre-existing map data is available.


A Good Foundation is Worth Many Labels: Label-Efficient Panoptic Segmentation

arXiv.org Artificial Intelligence

A key challenge for the widespread application of learning-based models for robotic perception is to significantly reduce the required amount of annotated training data while achieving accurate predictions. This is essential not only to decrease operating costs but also to speed up deployment time. In this work, we address this challenge for PAnoptic SegmenTation with fEw Labels (PASTEL) by exploiting the groundwork paved by visual foundation models. We leverage descriptive image features from such a model to train two lightweight network heads for semantic segmentation and object boundary detection, using very few annotated training samples. We then merge their predictions via a novel fusion module that yields panoptic maps based on normalized cut. To further enhance the performance, we utilize self-training on unlabeled images selected by a feature-driven similarity scheme. We underline the relevance of our approach by employing PASTEL to important robot perception use cases from autonomous driving and agricultural robotics. In extensive experiments, we demonstrate that PASTEL significantly outperforms previous methods for label-efficient segmentation even when using fewer annotations. The code of our work is publicly available at http://pastel.cs.uni-freiburg.de.


Efficient Robot Learning for Perception and Mapping

arXiv.org Artificial Intelligence

Holistic scene understanding poses a fundamental contribution to the autonomous operation of a robotic agent in its environment. Key ingredients include a well-defined representation of the surroundings to capture its spatial structure as well as assigning semantic meaning while delineating individual objects. Classic components from the toolbox of roboticists to address these tasks are simultaneous localization and mapping (SLAM) and panoptic segmentation. Although recent methods demonstrate impressive advances, mostly due to employing deep learning, they commonly utilize in-domain training on large datasets. Since following such a paradigm substantially limits their real-world application, my research investigates how to minimize human effort in deploying perception-based robotic systems to previously unseen environments. In particular, I focus on leveraging continual learning and reducing human annotations for efficient learning. An overview of my work can be found at https://vniclas.github.io.


Automatic Target-Less Camera-LiDAR Calibration From Motion and Deep Point Correspondences

arXiv.org Artificial Intelligence

Sensor setups of robotic platforms commonly include both camera and LiDAR as they provide complementary information. However, fusing these two modalities typically requires a highly accurate calibration between them. In this paper, we propose MDPCalib which is a novel method for camera-LiDAR calibration that requires neither human supervision nor any specific target objects. Instead, we utilize sensor motion estimates from visual and LiDAR odometry as well as deep learning-based 2D-pixel-to-3D-point correspondences that are obtained without in-domain retraining. We represent the camera-LiDAR calibration as a graph optimization problem and minimize the costs induced by constraints from sensor motion and point correspondences. In extensive experiments, we demonstrate that our approach yields highly accurate extrinsic calibration parameters and is robust to random initialization. Additionally, our approach generalizes to a wide range of sensor setups, which we demonstrate by employing it on various robotic platforms including a self-driving perception car, a quadruped robot, and a UAV. To make our calibration method publicly accessible, we release the code on our project website at http://calibration.cs.uni-freiburg.de.


BEVCar: Camera-Radar Fusion for BEV Map and Object Segmentation

arXiv.org Artificial Intelligence

Semantic scene segmentation from a bird's-eye-view (BEV) perspective plays a crucial role in facilitating planning and decision-making for mobile robots. Although recent vision-only methods have demonstrated notable advancements in performance, they often struggle under adverse illumination conditions such as rain or nighttime. While active sensors offer a solution to this challenge, the prohibitively high cost of LiDARs remains a limiting factor. Fusing camera data with automotive radars poses a more inexpensive alternative but has received less attention in prior research. In this work, we aim to advance this promising avenue by introducing BEVCar, a novel approach for joint BEV object and map segmentation. The core novelty of our approach lies in first learning a point-based encoding of raw radar data, which is then leveraged to efficiently initialize the lifting of image features into the BEV space. We perform extensive experiments on the nuScenes dataset and demonstrate that BEVCar outperforms the current state of the art. Moreover, we show that incorporating radar information significantly enhances robustness in challenging environmental conditions and improves segmentation performance for distant objects. To foster future research, we provide the weather split of the nuScenes dataset used in our experiments, along with our code and trained models at http://bevcar.cs.uni-freiburg.de.


Few-Shot Panoptic Segmentation With Foundation Models

arXiv.org Artificial Intelligence

Current state-of-the-art methods for panoptic segmentation require an immense amount of annotated training data that is both arduous and expensive to obtain posing a significant challenge for their widespread adoption. Concurrently, recent breakthroughs in visual representation learning have sparked a paradigm shift leading to the advent of large foundation models that can be trained with completely unlabeled images. In this work, we propose to leverage such task-agnostic image features to enable few-shot panoptic segmentation by presenting Segmenting Panoptic Information with Nearly 0 labels (SPINO). In detail, our method combines a DINOv2 backbone with lightweight network heads for semantic segmentation and boundary estimation. We show that our approach, albeit being trained with only ten annotated images, predicts high-quality pseudo-labels that can be used with any existing panoptic segmentation method. Notably, we demonstrate that SPINO achieves competitive results compared to fully supervised baselines while using less than 0.3% of the ground truth labels, paving the way for learning complex visual recognition tasks leveraging foundation models. To illustrate its general applicability, we further deploy SPINO on real-world robotic vision systems for both outdoor and indoor environments. To foster future research, we make the code and trained models publicly available at http://spino.cs.uni-freiburg.de.


Collaborative Dynamic 3D Scene Graphs for Automated Driving

arXiv.org Artificial Intelligence

Maps have played an indispensable role in enabling safe and automated driving. Although there have been many advances on different fronts ranging from SLAM to semantics, building an actionable hierarchical semantic representation of urban dynamic scenes from multiple agents is still a challenging problem. In this work, we present Collaborative URBan Scene Graphs (CURB-SG) that enable higher-order reasoning and efficient querying for many functions of automated driving. CURB-SG leverages panoptic LiDAR data from multiple agents to build large-scale maps using an effective graph-based collaborative SLAM approach that detects inter-agent loop closures. To semantically decompose the obtained 3D map, we build a lane graph from the paths of ego agents and their panoptic observations of other vehicles. Based on the connectivity of the lane graph, we segregate the environment into intersecting and non-intersecting road areas. Subsequently, we construct a multi-layered scene graph that includes lane information, the position of static landmarks and their assignment to certain map sections, other vehicles observed by the ego agents, and the pose graph from SLAM including 3D panoptic point clouds. We extensively evaluate CURB-SG in urban scenarios using a photorealistic simulator. We release our code at http://curb.cs.uni-freiburg.de.


CoDEPS: Online Continual Learning for Depth Estimation and Panoptic Segmentation

arXiv.org Artificial Intelligence

Operating a robot in the open world requires a high level of robustness with respect to previously unseen environments. Optimally, the robot is able to adapt by itself to new conditions without human supervision, e.g., automatically adjusting its perception system to changing lighting conditions. In this work, we address the task of continual learning for deep learning-based monocular depth estimation and panoptic segmentation in new environments in an online manner. We introduce CoDEPS to perform continual learning involving multiple real-world domains while mitigating catastrophic forgetting by leveraging experience replay. In particular, we propose a novel domain-mixing strategy to generate pseudo-labels to adapt panoptic segmentation. Furthermore, we explicitly address the limited storage capacity of robotic systems by leveraging sampling strategies for constructing a fixed-size replay buffer based on rare semantic class sampling and image diversity. We perform extensive evaluations of CoDEPS on various real-world datasets demonstrating that it successfully adapts to unseen environments without sacrificing performance on previous domains while achieving state-of-the-art results. The code of our work is publicly available at http://codeps.cs.uni-freiburg.de.