Goto

Collaborating Authors

 Sharan, Vatsal


Simultaneous Swap Regret Minimization via KL-Calibration

arXiv.org Artificial Intelligence

Calibration is a fundamental concept that aims at ensuring the reliability of probabilistic predictions by aligning them with real-world outcomes. There is a surge of studies on new calibration measures that are easier to optimize compared to the classical $\ell_1$-Calibration while still having strong implications for downstream applications. One recent such example is the work by Fishelson et al. (2025) who show that it is possible to achieve $O(T^{1/3})$ pseudo $\ell_2$-Calibration error via minimizing pseudo swap regret of the squared loss, which in fact implies the same bound for all bounded proper losses with a smooth univariate form. In this work, we significantly generalize their result in the following ways: (a) in addition to smooth univariate forms, our algorithm also simultaneously achieves $O(T^{1/3})$ swap regret for any proper loss with a twice continuously differentiable univariate form (such as Tsallis entropy); (b) our bounds hold not only for pseudo swap regret that measures losses using the forecaster's distributions on predictions, but also hold for the actual swap regret that measures losses using the forecaster's actual realized predictions. We achieve so by introducing a new stronger notion of calibration called (pseudo) KL-Calibration, which we show is equivalent to the (pseudo) swap regret for log loss. We prove that there exists an algorithm that achieves $O(T^{1/3})$ KL-Calibration error and provide an explicit algorithm that achieves $O(T^{1/3})$ pseudo KL-Calibration error. Moreover, we show that the same algorithm achieves $O(T^{1/3}(\log T)^{-1/3}\log(T/\delta))$ swap regret w.p. $\ge 1-\delta$ for any proper loss with a smooth univariate form, which implies $O(T^{1/3})$ $\ell_2$-Calibration error. A technical contribution of our work is a new randomized rounding procedure and a non-uniform discretization scheme to minimize the swap regret for log loss.


Proper Learnability and the Role of Unlabeled Data

arXiv.org Machine Learning

Proper learning refers to the setting in which learners must emit predictors in the underlying hypothesis class $H$, and often leads to learners with simple algorithmic forms (e.g. empirical risk minimization (ERM), structural risk minimization (SRM)). The limitation of proper learning, however, is that there exist problems which can only be learned improperly, e.g. in multiclass classification. Thus, we ask: Under what assumptions on the hypothesis class or the information provided to the learner is a problem properly learnable? We first demonstrate that when the unlabeled data distribution is given, there always exists an optimal proper learner governed by distributional regularization, a randomized generalization of regularization. We refer to this setting as the distribution-fixed PAC model, and continue to evaluate the learner on its worst-case performance over all distributions. Our result holds for all metric loss functions and any finite learning problem (with no dependence on its size). Further, we demonstrate that sample complexities in the distribution-fixed PAC model can shrink by only a logarithmic factor from the classic PAC model, strongly refuting the role of unlabeled data in PAC learning (from a worst-case perspective). We complement this with impossibility results which obstruct any characterization of proper learnability in the realizable PAC model. First, we observe that there are problems whose proper learnability is logically undecidable, i.e., independent of the ZFC axioms. We then show that proper learnability is not a monotone property of the underlying hypothesis class, and that it is not a local property (in a precise sense). Our impossibility results all hold even for the fundamental setting of multiclass classification, and go through a reduction of EMX learning (Ben-David et al., 2019) to proper classification which may be of independent interest.


FoNE: Precise Single-Token Number Embeddings via Fourier Features

arXiv.org Artificial Intelligence

Large Language Models (LLMs) typically represent numbers using multiple tokens, which requires the model to aggregate these tokens to interpret numerical values. This fragmentation makes both training and inference less efficient and adversely affects the model's performance on number-related tasks. Inspired by the observation that pre-trained LLMs internally learn Fourier-like features for number tokens, we propose Fourier Number Embedding (FoNE), a novel method that directly maps numbers into the embedding space with their Fourier features. FoNE encodes each number as a single token with only two embedding dimensions per digit, effectively capturing numerical values without fragmentation. This compact representation accelerates both training and inference. Compared to traditional subword and digit-wise embeddings, FoNE not only reduces computational overhead but also achieves higher accuracy across various numerical tasks including addition, subtraction and multiplication. On 6-digit decimal addition, FoNE requires 64$\times$ less data to achieve 99% accuracy than subword and digit-wise embeddings while using 3$\times$ and 6$\times$ fewer tokens per number, respectively. Furthermore, FoNE is the only method that yields 100% accuracy on over 100,000 test examples for addition, subtraction, and multiplication. The codes and visualization are available at https://fouriernumber.github.io/.


Discovering Data Structures: Nearest Neighbor Search and Beyond

arXiv.org Artificial Intelligence

We propose a general framework for end-to-end learning of data structures. Our framework adapts to the underlying data distribution and provides fine-grained control over query and space complexity. Crucially, the data structure is learned from scratch, and does not require careful initialization or seeding with candidate data structures. We first apply this framework to the problem of nearest neighbor search. In several settings, we are able to reverse-engineer the learned data structures and query algorithms. For 1D nearest neighbor search, the model discovers optimal distribution (in)dependent algorithms such as binary search and variants of interpolation search. In higher dimensions, the model learns solutions that resemble k-d trees in some regimes, while in others, elements of locality-sensitive hashing emerge. Additionally, the model learns useful representations of high-dimensional data and exploits them to design effective data structures. We also adapt our framework to the problem of estimating frequencies over a data stream, and believe it could be a powerful discovery tool for new problems. Can deep learning models be trained to discover data structures from scratch? There are several motivations for this question. Deep learning models are increasingly performing tasks once considered exclusive to humans, from image recognition and mastering the game of Go to engaging in natural language conversations. Designing data structures and algorithms, along with solving complex math problems, are particularly challenging tasks. They require searching through a vast combinatorial space with a difficult to define structure. It is therefore natural to ask what it would take for deep learning models to solve such problems. There are already promising signs: these models have discovered fast matrix-multiplication algorithms (Fawzi et al., 2022), solved SA T problems (Selsam et al., 2018), and learned optimization algorithms for various learning tasks (Garg et al., 2022; Aky urek et al., 2022; Fu et al., 2023; V on Oswald et al., 2023). In this work, we investigate the problem of data structure discovery, with a focus on nearest neighbor search. The second motivation is practical. Data structures are ubiquitous objects that enable efficient querying. Traditionally, they have been designed to be worst-case optimal and therefore agnostic to the underlying data and query distributions.


When is Multicalibration Post-Processing Necessary?

arXiv.org Artificial Intelligence

A popular approach to ensuring that probabilistic predictions from machine learning algorithms are meaningful is model calibration. Intuitively, calibration requires that amongst all samples given score p [0, 1] by an ML algorithm, exactly a p-fraction of those samples have positive label. Calibration ensures that a predictor has an accurate estimate of its own predictive uncertainty, and is a fundamental requirement in applications where probabilities may be taken into account for high-stake decisions such as disease diagnosis (Dahabreh et al., 2017) or credit/lending decisions (Bequรฉ et al., 2017). Miscalibration can result in undesirable downstream consequences when probabilistic predictions are thresholded into decisions: if a predictor has high calibration error in disease diagnosis, for example, the individuals assigned lower predicted probabilities may be unfairly denied treatment. Calibration has a long history in the machine learning community (Guo et al., 2017; Minderer et al., 2021; Niculescu-Mizil and Caruana, 2005; Platt et al., 1999), but was arguably first introduced in fairness contexts by Cleary (1968). More recently, it has appeared in the algorithmic fairness community via the seminal works of Chouldechova (2017); Kleinberg et al. (2017). Although calibration ensures meaningful uncertainty estimates aggregated over the entire population, it does not preclude potential discrimination at the level of groups of individuals: a model may be well calibrated overall but systematically underestimate the risk or qualification probability on historically underrepresented subsets of individuals. For example, Obermeyer et al. (2019) show differing calibration error rates across groups defined by race for prediction in high-risk patient care management systems. As pointed out by Obermeyer et al. (2019), in the


Pre-trained Large Language Models Use Fourier Features to Compute Addition

arXiv.org Artificial Intelligence

Pre-trained large language models (LLMs) exhibit impressive mathematical reasoning capabilities, yet how they compute basic arithmetic, such as addition, remains unclear. This paper shows that pre-trained LLMs add numbers using Fourier features -- dimensions in the hidden state that represent numbers via a set of features sparse in the frequency domain. Within the model, MLP and attention layers use Fourier features in complementary ways: MLP layers primarily approximate the magnitude of the answer using low-frequency features, while attention layers primarily perform modular addition (e.g., computing whether the answer is even or odd) using high-frequency features. Pre-training is crucial for this mechanism: models trained from scratch to add numbers only exploit low-frequency features, leading to lower accuracy. Introducing pre-trained token embeddings to a randomly initialized model rescues its performance. Overall, our analysis demonstrates that appropriate pre-trained representations (e.g., Fourier features) can unlock the ability of Transformers to learn precise mechanisms for algorithmic tasks.


Optimal Multiclass U-Calibration Error and Beyond

arXiv.org Machine Learning

We consider the problem of online multiclass U-calibration, where a forecaster aims to make sequential distributional predictions over $K$ classes with low U-calibration error, that is, low regret with respect to all bounded proper losses simultaneously. Kleinberg et al. (2023) developed an algorithm with U-calibration error $O(K\sqrt{T})$ after $T$ rounds and raised the open question of what the optimal bound is. We resolve this question by showing that the optimal U-calibration error is $\Theta(\sqrt{KT})$ -- we start with a simple observation that the Follow-the-Perturbed-Leader algorithm of Daskalakis and Syrgkanis (2016) achieves this upper bound, followed by a matching lower bound constructed with a specific proper loss (which, as a side result, also proves the optimality of the algorithm of Daskalakis and Syrgkanis (2016) in the context of online learning against an adversary with finite choices). We also strengthen our results under natural assumptions on the loss functions, including $\Theta(\log T)$ U-calibration error for Lipschitz proper losses, $O(\log T)$ U-calibration error for a certain class of decomposable proper losses, U-calibration error bounds for proper losses with a low covering number, and others.


Simplicity Bias of Transformers to Learn Low Sensitivity Functions

arXiv.org Machine Learning

Transformers achieve state-of-the-art accuracy and robustness across many tasks, but an understanding of the inductive biases that they have and how those biases are different from other neural network architectures remains elusive. Various neural network architectures such as fully connected networks have been found to have a simplicity bias towards simple functions of the data; one version of this simplicity bias is a spectral bias to learn simple functions in the Fourier space. In this work, we identify the notion of sensitivity of the model to random changes in the input as a notion of simplicity bias which provides a unified metric to explain the simplicity and spectral bias of transformers across different data modalities. We show that transformers have lower sensitivity than alternative architectures, such as LSTMs, MLPs and CNNs, across both vision and language tasks. We also show that low-sensitivity bias correlates with improved robustness; furthermore, it can also be used as an efficient intervention to further improve the robustness of transformers.


Learnability is a Compact Property

arXiv.org Artificial Intelligence

Recent work on learning has yielded a striking result: the learnability of various problems can be undecidable, or independent of the standard ZFC axioms of set theory. Furthermore, the learnability of such problems can fail to be a property of finite character: informally, it cannot be detected by examining finite projections of the problem. On the other hand, learning theory abounds with notions of dimension that characterize learning and consider only finite restrictions of the problem, i.e., are properties of finite character. How can these results be reconciled? More precisely, which classes of learning problems are vulnerable to logical undecidability, and which are within the grasp of finite characterizations? We demonstrate that the difficulty of supervised learning with metric losses admits a tight finite characterization. In particular, we prove that the sample complexity of learning a hypothesis class can be detected by examining its finite projections. For realizable and agnostic learning with respect to a wide class of proper loss functions, we demonstrate an exact compactness result: a class is learnable with a given sample complexity precisely when the same is true of all its finite projections. For realizable learning with improper loss functions, we show that exact compactness of sample complexity can fail, and provide matching upper and lower bounds of a factor of 2 on the extent to which such sample complexities can differ. We conjecture that larger gaps are possible for the agnostic case. At the heart of our technical work is a compactness result concerning assignments of variables that maintain a class of functions below a target value, which generalizes Hall's classic matching theorem and may be of independent interest.


Stability and Multigroup Fairness in Ranking with Uncertain Predictions

arXiv.org Artificial Intelligence

Rankings are ubiquitous across many applications, from search engines to hiring committees. In practice, many rankings are derived from the output of predictors. However, when predictors trained for classification tasks have intrinsic uncertainty, it is not obvious how this uncertainty should be represented in the derived rankings. Our work considers ranking functions: maps from individual predictions for a classification task to distributions over rankings. We focus on two aspects of ranking functions: stability to perturbations in predictions and fairness towards both individuals and subgroups. Not only is stability an important requirement for its own sake, but -- as we show -- it composes harmoniously with individual fairness in the sense of Dwork et al. (2012). While deterministic ranking functions cannot be stable aside from trivial scenarios, we show that the recently proposed uncertainty aware (UA) ranking functions of Singh et al. (2021) are stable. Our main result is that UA rankings also achieve multigroup fairness through successful composition with multiaccurate or multicalibrated predictors. Our work demonstrates that UA rankings naturally interpolate between group and individual level fairness guarantees, while simultaneously satisfying stability guarantees important whenever machine-learned predictions are used.