Goto

Collaborating Authors

 Ross, Jerret


Distributional Preference Alignment of LLMs via Optimal Transport

arXiv.org Machine Learning

Current LLM alignment techniques use pairwise human preferences at a sample level, and as such, they do not imply an alignment on the distributional level. We propose in this paper Alignment via Optimal Transport (AOT), a novel method for distributional preference alignment of LLMs. AOT aligns LLMs on unpaired preference data by making the reward distribution of the positive samples stochastically dominant in the first order on the distribution of negative samples. We introduce a convex relaxation of this first-order stochastic dominance and cast it as an optimal transport problem with a smooth and convex cost. Thanks to the one-dimensional nature of the resulting optimal transport problem and the convexity of the cost, it has a closed-form solution via sorting on empirical measures. We fine-tune LLMs with this AOT objective, which enables alignment by penalizing the violation of the stochastic dominance of the reward distribution of the positive samples on the reward distribution of the negative samples. We analyze the sample complexity of AOT by considering the dual of the OT problem and show that it converges at the parametric rate. Empirically, we show on a diverse set of alignment datasets and LLMs that AOT leads to state-of-the-art models in the 7B family of models when evaluated with Open LLM Benchmarks and AlpacaEval.


GP-MoLFormer: A Foundation Model For Molecular Generation

arXiv.org Artificial Intelligence

Transformer-based models trained on large and general purpose datasets consisting of molecular strings have recently emerged as a powerful tool for successfully modeling various structure-property relations. Inspired by this success, we extend the paradigm of training chemical language transformers on large-scale chemical datasets to generative tasks in this work. Specifically, we propose GP-MoLFormer, an autoregressive molecular string generator that is trained on more than 1.1B chemical SMILES. GP-MoLFormer uses a 46.8M parameter transformer decoder model with linear attention and rotary positional encodings as the base architecture. We explore the utility of GP-MoLFormer in generating novel, valid, and unique SMILES. Impressively, we find GP-MoLFormer is able to generate a significant fraction of novel, valid, and unique SMILES even when the number of generated molecules is in the 10 billion range and the reference set is over a billion. We also find strong memorization of training data in GP-MoLFormer generations, which has so far remained unexplored for chemical language models. Our analyses reveal that training data memorization and novelty in generations are impacted by the quality of the training data; duplication bias in training data can enhance memorization at the cost of lowering novelty. We evaluate GP-MoLFormer's utility and compare it with that of existing baselines on three different tasks: de novo generation, scaffold-constrained molecular decoration, and unconstrained property-guided optimization. While the first two are handled with no additional training, we propose a parameter-efficient fine-tuning method for the last task, which uses property-ordered molecular pairs as input. We call this new approach pair-tuning. Our results show GP-MoLFormer performs better or comparable with baselines across all three tasks, demonstrating its general utility.


Auditing and Generating Synthetic Data with Controllable Trust Trade-offs

arXiv.org Machine Learning

Real-world data often exhibits bias, imbalance, and privacy risks. Synthetic datasets have emerged to address these issues. This paradigm relies on generative AI models to generate unbiased, privacy-preserving data while maintaining fidelity to the original data. However, assessing the trustworthiness of synthetic datasets and models is a critical challenge. We introduce a holistic auditing framework that comprehensively evaluates synthetic datasets and AI models. It focuses on preventing bias and discrimination, ensures fidelity to the source data, assesses utility, robustness, and privacy preservation. We demonstrate the framework's effectiveness by auditing various generative models across diverse use cases like education, healthcare, banking, and human resources, spanning different data modalities such as tabular, time-series, vision, and natural language. This holistic assessment is essential for compliance with regulatory safeguards. We introduce a trustworthiness index to rank synthetic datasets based on their safeguards trade-offs. Furthermore, we present a trustworthiness-driven model selection and cross-validation process during training, exemplified with "TrustFormers" across various data types. This approach allows for controllable trustworthiness trade-offs in synthetic data creation. Our auditing framework fosters collaboration among stakeholders, including data scientists, governance experts, internal reviewers, external certifiers, and regulators. This transparent reporting should become a standard practice to prevent bias, discrimination, and privacy violations, ensuring compliance with policies and providing accountability, safety, and performance guarantees.


Risk Assessment and Statistical Significance in the Age of Foundation Models

arXiv.org Machine Learning

Foundation models such as large language models (LLMs) have shown remarkable capabilities redefining the field of artificial intelligence. At the same time, they present pressing and challenging socio-technical risks regarding the trustworthiness of their outputs and their alignment with human values and ethics [Bommasani et al., 2021]. Evaluating LLMs is therefore a multi-dimensional problem, where those risks are assessed across diverse tasks and domains [Chang et al., 2023]. In order to quantify these risks, Liang et al. [2022], Wang et al. [2023], Huang et al. [2023] proposed benchmarks of automatic metrics for probing the trustworthiness of LLMs. These metrics include accuracy, robustness, fairness, toxicity of the outputs, etc. Human evaluation benchmarks can be even more nuanced, and are often employed when tasks surpass the scope of standard metrics. Notable benchmarks based on human and automatic evaluations include, among others, Chatbot Arena [Zheng et al., 2023], HELM [Bommasani et al., 2023], MosaicML's Eval, Open LLM Leaderboard [Wolf, 2023], and BIG-bench [Srivastava et al., 2022], each catering to specific evaluation areas such as chatbot performance, knowledge assessment, and domain-specific challenges. Traditional metrics, however, sometimes do not correlate well with human judgments.


Large-Scale Chemical Language Representations Capture Molecular Structure and Properties

arXiv.org Artificial Intelligence

Models based on machine learning can enable accurate and fast molecular property predictions, which is of interest in drug discovery and material design. Various supervised machine learning models have demonstrated promising performance, but the vast chemical space and the limited availability of property labels make supervised learning challenging. Recently, unsupervised transformer-based language models pretrained on a large unlabelled corpus have produced state-of-the-art results in many downstream natural language processing tasks. Inspired by this development, we present molecular embeddings obtained by training an efficient transformer encoder model, MoLFormer, which uses rotary positional embeddings. This model employs a linear attention mechanism, coupled with highly distributed training, on SMILES sequences of 1.1 billion unlabelled molecules from the PubChem and ZINC datasets. We show that the learned molecular representation outperforms existing baselines, including supervised and self-supervised graph neural networks and language models, on several downstream tasks from ten benchmark datasets. They perform competitively on two others. Further analyses, specifically through the lens of attention, demonstrate that MoLFormer trained on chemical SMILES indeed learns the spatial relationships between atoms within a molecule. These results provide encouraging evidence that large-scale molecular language models can capture sufficient chemical and structural information to predict various distinct molecular properties, including quantum-chemical properties.


Tabular Transformers for Modeling Multivariate Time Series

arXiv.org Artificial Intelligence

Tabular datasets are ubiquitous across many industries, especially in vital sectors such as healthcare and finance. Such industrial datasets often contain sensitive information, raising privacy and confidentiality issues that preclude their public release and limit their analysis to methods that are compatible with an appropriate anonymization process. We can distinguish between two types of tabular data: static tabular data that corresponds to independent rows in a table, and dynamic tabular data that corresponds to tabular time series, also referred to also as multivariate time series. The machine learning and deep learning communities have devoted considerable effort to learning from static tabular data, as well as generating synthetic static tabular data that can be released as a privacy compliant surrogate of the original data. On the other hand, less effort has been devoted to the more challenging dynamic case, where it is important to also account for the temporal component of the data.


Fast Mixing of Multi-Scale Langevin Dynamics under the Manifold Hypothesis

arXiv.org Machine Learning

Recently, the task of image generation has attracted much attention. In particular, the recent empirical successes of the Markov Chain Monte Carlo (MCMC) technique of Langevin Dynamics have prompted a number of theoretical advances; despite this, several outstanding problems remain. First, the Langevin Dynamics is run in very high dimension on a nonconvex landscape; in the worst case, due to the NP-hardness of nonconvex optimization, it is thought that Langevin Dynamics mixes only in time exponential in the dimension. In this work, we demonstrate how the manifold hypothesis allows for the considerable reduction of mixing time, from exponential in the ambient dimension to depending only on the (much smaller) intrinsic dimension of the data. Second, the high dimension of the sampling space significantly hurts the performance of Langevin Dynamics; we leverage a multi-scale approach to help ameliorate this issue and observe that this multi-resolution algorithm allows for a trade-off between image quality and computational expense in generation.


Wasserstein Barycenter Model Ensembling

arXiv.org Machine Learning

In this paper we propose to perform model ensembling in a multiclass or a multilabel learning setting using Wasserstein (W.) barycenters. Optimal transport metrics, such as the Wasserstein distance, allow incorporating semantic side information such as word embeddings. Using W. barycenters to find the consensus between models allows us to balance confidence and semantics in finding the agreement between the models. We show applications of Wasserstein ensembling in attribute-based classification, multilabel learning and image captioning generation. These results show that the W. ensembling is a viable alternative to the basic geometric or arithmetic mean ensembling.