Goto

Collaborating Authors

 Poudel, Bibek


Beacon: A Naturalistic Driving Dataset During Blackouts for Benchmarking Traffic Reconstruction and Control

arXiv.org Artificial Intelligence

Extreme weather events and other vulnerabilities are causing blackouts with increasing frequency, disrupting traffic control systems and posing significant challenges to urban mobility. To address this growing concern, we introduce \model{}, a naturalistic driving dataset collected during blackouts at complex intersections. Beacon provides detailed traffic data from two unsignalized intersections in Memphis, TN, including timesteps, origin, and destination lanes for each vehicle over four hours. We analyze traffic demand, vehicle trajectories, and density across different scenarios. We also use the dataset to reconstruct unsignalized, signalized and mixed traffic conditions, demonstrating its utility for benchmarking traffic reconstruction techniques and control methods. To the best of our knowledge, Beacon could be the first public available traffic dataset that captures naturalistic driving behaviors at complex intersections.


CARL: Congestion-Aware Reinforcement Learning for Imitation-based Perturbations in Mixed Traffic Control

arXiv.org Artificial Intelligence

Accurately modeling such behavior is crucial for validating Robot Vehicles (RVs) in simulation and realizing the potential of mixed traffic control. However, existing approaches like parameterized models and data-driven techniques struggle to capture the full complexity and diversity. To address this, in this work, we introduce CARL, a hybrid approach that combines imitation learning for close proximity car-following and probabilistic sampling for larger headways. We also propose two classes of RL-based RVs: a safety RV focused on maximizing safety and an efficiency RV focused on maximizing efficiency. Our experiments show that the safety RV increases Time-to-Collision above the critical 4 second threshold and reduces Deceleration Rate to Avoid a Crash by up to 80%, while the efficiency RV achieves improvements in throughput of up to 49%. These results demonstrate the effectiveness of CARL in enhancing both safety and efficiency in mixed traffic.


DocuMint: Docstring Generation for Python using Small Language Models

arXiv.org Artificial Intelligence

Effective communication, specifically through documentation, is the beating heart of collaboration among contributors in software development. Recent advancements in language models (LMs) have enabled the introduction of a new type of actor in that ecosystem: LM-powered assistants capable of code generation, optimization, and maintenance. Our study investigates the efficacy of small language models (SLMs) for generating high-quality docstrings by assessing accuracy, conciseness, and clarity, benchmarking performance quantitatively through mathematical formulas and qualitatively through human evaluation using Likert scale. Further, we introduce DocuMint, as a large-scale supervised fine-tuning dataset with 100,000 samples. In quantitative experiments, Llama 3 8B achieved the best performance across all metrics, with conciseness and clarity scores of 0.605 and 64.88, respectively. However, under human evaluation, CodeGemma 7B achieved the highest overall score with an average of 8.3 out of 10 across all metrics. Fine-tuning the CodeGemma 2B model using the DocuMint dataset led to significant improvements in performance across all metrics, with gains of up to 22.5% in conciseness. The fine-tuned model and the dataset can be found in HuggingFace and the code can be found in the repository.


Mixed Traffic Control and Coordination from Pixels

arXiv.org Artificial Intelligence

Traffic congestion is a persistent problem in our society. Previous methods for traffic control have proven futile in alleviating current congestion levels leading researchers to explore ideas with robot vehicles given the increased emergence of vehicles with different levels of autonomy on our roads. This gives rise to mixed traffic control, where robot vehicles regulate human-driven vehicles through reinforcement learning (RL). However, most existing studies use precise observations that require domain expertise and hand engineering for each road network's observation space. Additionally, precise observations use global information, such as environment outflow, and local information, i.e., vehicle positions and velocities. Obtaining this information requires updating existing road infrastructure with vast sensor environments and communication to potentially unwilling human drivers. We consider image observations, a modality that has not been extensively explored for mixed traffic control via RL, as the alternative: 1) images do not require a complete re-imagination of the observation space from environment to environment; 2) images are ubiquitous through satellite imagery, in-car camera systems, and traffic monitoring systems; and 3) images only require communication to equipment. In this work, we show robot vehicles using image observations can achieve competitive performance to using precise information on environments, including ring, figure eight, intersection, merge, and bottleneck. In certain scenarios, our approach even outperforms using precision observations, e.g., up to 8% increase in average vehicle velocity in the merge environment, despite only using local traffic information as opposed to global traffic information.


Beyond Simulated Drivers: Evaluating the Impact of Real-World Car-Following in Mixed Traffic Control

arXiv.org Artificial Intelligence

Human-driven vehicles can amplify naturally occurring perturbations in traffic, leading to congestion and consequently increased fuel consumption, higher collision risks, and reduced capacity utilization. While previous research has highlighted that a fraction of Robot Vehicles (RVs) can mitigate these issues, they often rely on simulations with simplistic, model-based Human-driven Vehicles (HVs) during car-following scenarios. Diverging from this trend, in this study, we analyze real-world human driving trajectories, extracting a wide range of acceleration behaviors during car-following. We then incorporate these behaviors in simulation where RVs from prior studies are employed to mitigate congestion, and evaluate their safety, efficiency, and stability. Further, we also introduce a reinforcement learning based RV that utilizes a congestion stage classifier neural network to optimize either "safety+stability" or "efficiency" in the presence of the diverse human driving behaviors. We evaluate the proposed RVs in two different mixed traffic control environments at various densities, configurations, and penetration rates and compare with the existing RVs.


Can ChatGPT Enable ITS? The Case of Mixed Traffic Control via Reinforcement Learning

arXiv.org Artificial Intelligence

The surge in Reinforcement Learning (RL) applications in Intelligent Transportation Systems (ITS) has contributed to its growth as well as highlighted key challenges. However, defining objectives of RL agents in traffic control and management tasks, as well as aligning policies with these goals through an effective formulation of Markov Decision Process (MDP), can be challenging and often require domain experts in both RL and ITS. Recent advancements in Large Language Models (LLMs) such as GPT-4 highlight their broad general knowledge, reasoning capabilities, and commonsense priors across various domains. In this work, we conduct a large-scale user study involving 70 participants to investigate whether novices can leverage ChatGPT to solve complex mixed traffic control problems. Three environments are tested, including ring road, bottleneck, and intersection. We find ChatGPT has mixed results. For intersection and bottleneck, ChatGPT increases number of successful policies by 150% and 136% compared to solely beginner capabilities, with some of them even outperforming experts. However, ChatGPT does not provide consistent improvements across all scenarios.


Efficient Quality-Diversity Optimization through Diverse Quality Species

arXiv.org Artificial Intelligence

A prevalent limitation of optimizing over a single objective is that it can be misguided, becoming trapped in local optimum. This can be rectified by Quality-Diversity (QD) algorithms, where a population of high-quality and diverse solutions to a problem is preferred. Most conventional QD approaches, for example, MAP-Elites, explicitly manage a behavioral archive where solutions are broken down into predefined niches. In this work, we show that a diverse population of solutions can be found without the limitation of needing an archive or defining the range of behaviors in advance. Instead, we break down solutions into independently evolving species and use unsupervised skill discovery to learn diverse, high-performing solutions. We show that this can be done through gradient-based mutations that take on an information theoretic perspective of jointly maximizing mutual information and performance. We propose Diverse Quality Species (DQS) as an alternative to archive-based QD algorithms. We evaluate it over several simulated robotic environments and show that it can learn a diverse set of solutions from varying species. Furthermore, our results show that DQS is more sample-efficient and performant when compared to other QD algorithms. Relevant code and hyper-parameters are available at: https://github.com/rwickman/NEAT_RL.


Learning to Control DC Motor for Micromobility in Real Time with Reinforcement Learning

arXiv.org Artificial Intelligence

Autonomous micromobility has been attracting the attention of researchers and practitioners in recent years. A key component of many micro-transport vehicles is the DC motor, a complex dynamical system that is continuous and non-linear. Learning to quickly control the DC motor in the presence of disturbances and uncertainties is desired for various applications that require robustness and stability. Techniques to accomplish this task usually rely on a mathematical system model, which is often insufficient to anticipate the effects of time-varying and interrelated sources of non-linearities. While some model-free approaches have been successful at the task, they rely on massive interactions with the system and are trained in specialized hardware in order to fit a highly parameterized controller. In this work, we learn to steer a DC motor via sample-efficient reinforcement learning. Using data collected from hardware interactions in the real world, we additionally build a simulator to experiment with a wide range of parameters and learning strategies. With the best parameters found, we learn an effective control policy in one minute and 53 seconds on a simulation and in 10 minutes and 35 seconds on a physical system.


Black-box Adversarial Attacks on Network-wide Multi-step Traffic State Prediction Models

arXiv.org Artificial Intelligence

Traffic state prediction is necessary for many Intelligent Transportation Systems applications. Recent developments of the topic have focused on network-wide, multi-step prediction, where state of the art performance is achieved via deep learning models, in particular, graph neural network-based models. While the prediction accuracy of deep learning models is high, these models' robustness has raised many safety concerns, given that imperceptible perturbations added to input can substantially degrade the model performance. In this work, we propose an adversarial attack framework by treating the prediction model as a black-box, i.e., assuming no knowledge of the model architecture, training data, and (hyper)parameters. However, we assume that the adversary can oracle the prediction model with any input and obtain corresponding output. Next, the adversary can train a substitute model using input-output pairs and generate adversarial signals based on the substitute model. To test the attack effectiveness, two state of the art, graph neural network-based models (GCGRNN and DCRNN) are examined. As a result, the adversary can degrade the target model's prediction accuracy up to $54\%$. In comparison, two conventional statistical models (linear regression and historical average) are also examined. While these two models do not produce high prediction accuracy, they are either influenced negligibly (less than $3\%$) or are immune to the adversary's attack.