Goto

Collaborating Authors

 Pierrot, Thomas


Simple Guidance Mechanisms for Discrete Diffusion Models

arXiv.org Artificial Intelligence

Diffusion models for continuous data gained widespread adoption owing to their high quality generation and control mechanisms. However, controllable diffusion on discrete data faces challenges given that continuous guidance methods do not directly apply to discrete diffusion. Here, we provide a straightforward derivation of classifier-free and classifier-based guidance for discrete diffusion, as well as a new class of diffusion models that leverage uniform noise and that are more guidable because they can continuously edit their outputs. We improve the quality of these models with a novel continuous-time variational lower bound that yields state-of-the-art performance, especially in settings involving guidance or fast generation. Empirically, we demonstrate that our guidance mechanisms combined with uniform noise diffusion improve controllable generation relative to autoregressive and diffusion baselines on several discrete data domains, including genomic sequences, small molecule design, and discretized image generation.


Preference-Conditioned Gradient Variations for Multi-Objective Quality-Diversity

arXiv.org Artificial Intelligence

In a variety of domains, from robotics to finance, Quality-Diversity algorithms have been used to generate collections of both diverse and high-performing solutions. Multi-Objective Quality-Diversity algorithms have emerged as a promising approach for applying these methods to complex, multi-objective problems. However, existing methods are limited by their search capabilities. For example, Multi-Objective Map-Elites depends on random genetic variations which struggle in high-dimensional search spaces. Despite efforts to enhance search efficiency with gradient-based mutation operators, existing approaches consider updating solutions to improve on each objective separately rather than achieving desired trade-offs. In this work, we address this limitation by introducing Multi-Objective Map-Elites with Preference-Conditioned Policy-Gradient and Crowding Mechanisms: a new Multi-Objective Quality-Diversity algorithm that uses preference-conditioned policy-gradient mutations to efficiently discover promising regions of the objective space and crowding mechanisms to promote a uniform distribution of solutions on the Pareto front. We evaluate our approach on six robotics locomotion tasks and show that our method outperforms or matches all state-of-the-art Multi-Objective Quality-Diversity methods in all six, including two newly proposed tri-objective tasks. Importantly, our method also achieves a smoother set of trade-offs, as measured by newly-proposed sparsity-based metrics. This performance comes at a lower computational storage cost compared to previous methods.


Multi-Objective Quality-Diversity for Crystal Structure Prediction

arXiv.org Artificial Intelligence

Crystal structures are indispensable across various domains, from batteries to solar cells, and extensive research has been dedicated to predicting their properties based on their atomic configurations. However, prevailing Crystal Structure Prediction methods focus on identifying the most stable solutions that lie at the global minimum of the energy function. This approach overlooks other potentially interesting materials that lie in neighbouring local minima and have different material properties such as conductivity or resistance to deformation. By contrast, Quality-Diversity algorithms provide a promising avenue for Crystal Structure Prediction as they aim to find a collection of high-performing solutions that have diverse characteristics. However, it may also be valuable to optimise for the stability of crystal structures alongside other objectives such as magnetism or thermoelectric efficiency. Therefore, in this work, we harness the power of Multi-Objective Quality-Diversity algorithms in order to find crystal structures which have diverse features and achieve different trade-offs of objectives. We analyse our approach on 5 crystal systems and demonstrate that it is not only able to re-discover known real-life structures, but also find promising new ones. Moreover, we propose a method for illuminating the objective space to gain an understanding of what trade-offs can be achieved.


Learning the Language of Protein Structure

arXiv.org Artificial Intelligence

Representation learning and \emph{de novo} generation of proteins are pivotal computational biology tasks. Whilst natural language processing (NLP) techniques have proven highly effective for protein sequence modelling, structure modelling presents a complex challenge, primarily due to its continuous and three-dimensional nature. Motivated by this discrepancy, we introduce an approach using a vector-quantized autoencoder that effectively tokenizes protein structures into discrete representations. This method transforms the continuous, complex space of protein structures into a manageable, discrete format with a codebook ranging from 4096 to 64000 tokens, achieving high-fidelity reconstructions with backbone root mean square deviations (RMSD) of approximately 1-5 \AA. To demonstrate the efficacy of our learned representations, we show that a simple GPT model trained on our codebooks can generate novel, diverse, and designable protein structures. Our approach not only provides representations of protein structure, but also mitigates the challenges of disparate modal representations and sets a foundation for seamless, multi-modal integration, enhancing the capabilities of computational methods in protein design.


PASTA: Pretrained Action-State Transformer Agents

arXiv.org Artificial Intelligence

Self-supervised learning has brought about a revolutionary paradigm shift in various computing domains, including NLP, vision, and biology. Recent approaches involve pre-training transformer models on vast amounts of unlabeled data, serving as a starting point for efficiently solving downstream tasks. In reinforcement learning, researchers have recently adapted these approaches, developing models pre-trained on expert trajectories. This advancement enables the models to tackle a broad spectrum of tasks, ranging from robotics to recommendation systems. However, existing methods mostly rely on intricate pre-training objectives tailored to specific downstream applications. This paper conducts a comprehensive investigation of models, referred to as pre-trained action-state transformer agents (PASTA). Our study covers a unified methodology and covers an extensive set of general downstream tasks including behavioral cloning, offline RL, sensor failure robustness, and dynamics change adaptation. Our objective is to systematically compare various design choices and offer valuable insights that will aid practitioners in developing robust models. Key highlights of our study include tokenization at the component level for actions and states, the use of fundamental pre-training objectives such as next token prediction or masked language modeling, simultaneous training of models across multiple domains, and the application of various fine-tuning strategies. In this study, the developed models contain fewer than 7 million parameters allowing a broad community to use these models and reproduce our experiments. We hope that this study will encourage further research into the use of transformers with first principle design choices to represent RL trajectories and contribute to robust policy learning. Reinforcement Learning (RL) has emerged as a robust framework for training highly efficient agents to interact with complex environments and learn optimal decision-making policies. RL algorithms aim to devise effective strategies by maximizing cumulative rewards from interactions with the environment.


Gradient-Informed Quality Diversity for the Illumination of Discrete Spaces

arXiv.org Artificial Intelligence

Quality Diversity (QD) algorithms have been proposed to search for a large collection of both diverse and high-performing solutions instead of a single set of local optima. While early QD algorithms view the objective and descriptor functions as black-box functions, novel tools have been introduced to use gradient information to accelerate the search and improve overall performance of those algorithms over continuous input spaces. However a broad range of applications involve discrete spaces, such as drug discovery or image generation. Exploring those spaces is challenging as they are combinatorially large and gradients cannot be used in the same manner as in continuous spaces. We introduce map-elites with a Gradient-Informed Discrete Emitter (ME-GIDE), which extends QD optimisation with differentiable functions over discrete search spaces. ME-GIDE leverages the gradient information of the objective and descriptor functions with respect to its discrete inputs to propose gradient-informed updates that guide the search towards a diverse set of high quality solutions. We evaluate our method on challenging benchmarks including protein design and discrete latent space illumination and find that our method outperforms state-of-the-art QD algorithms in all benchmarks.


Assessing Quality-Diversity Neuro-Evolution Algorithms Performance in Hard Exploration Problems

arXiv.org Artificial Intelligence

A fascinating aspect of nature lies in its ability to produce a collection of organisms that are all high-performing in their niche. Quality-Diversity (QD) methods are evolutionary algorithms inspired by this observation, that obtained great results in many applications, from wing design to robot adaptation. Recently, several works demonstrated that these methods could be applied to perform neuro-evolution to solve control problems in large search spaces. In such problems, diversity can be a target in itself. Diversity can also be a way to enhance exploration in tasks exhibiting deceptive reward signals. While the first aspect has been studied in depth in the QD community, the latter remains scarcer in the literature. Exploration is at the heart of several domains trying to solve control problems such as Reinforcement Learning and QD methods are promising candidates to overcome the challenges associated. Therefore, we believe that standardized benchmarks exhibiting control problems in high dimension with exploration difficulties are of interest to the QD community. In this paper, we highlight three candidate benchmarks and explain why they appear relevant for systematic evaluation of QD algorithms. We also provide open-source implementations in Jax allowing practitioners to run fast and numerous experiments on few compute resources.


Neuroevolution is a Competitive Alternative to Reinforcement Learning for Skill Discovery

arXiv.org Artificial Intelligence

Deep Reinforcement Learning (RL) has emerged as a powerful paradigm for training neural policies to solve complex control tasks. However, these policies tend to be overfit to the exact specifications of the task and environment they were trained on, and thus do not perform well when conditions deviate slightly or when composed hierarchically to solve even more complex tasks. Recent work has shown that training a mixture of policies, as opposed to a single one, that are driven to explore different regions of the state-action space can address this shortcoming by generating a diverse set of behaviors, referred to as skills, that can be collectively used to great effect in adaptation tasks or for hierarchical planning. This is typically realized by including a diversity term - often derived from information theory - in the objective function optimized by RL. However these approaches often require careful hyperparameter tuning to be effective. In this work, we demonstrate that less widely-used neuroevolution methods, specifically Quality Diversity (QD), are a competitive alternative to information-theory-augmented RL for skill discovery. Through an extensive empirical evaluation comparing eight state-of-the-art algorithms (four flagship algorithms from each line of work) on the basis of (i) metrics directly evaluating the skills' diversity, (ii) the skills' performance on adaptation tasks, and (iii) the skills' performance when used as primitives for hierarchical planning; QD methods are found to provide equal, and sometimes improved, performance whilst being less sensitive to hyperparameters and more scalable. As no single method is found to provide near-optimal performance across all environments, there is a rich scope for further research which we support by proposing future directions and providing optimized open-source implementations.


QDax: A Library for Quality-Diversity and Population-based Algorithms with Hardware Acceleration

arXiv.org Artificial Intelligence

QDax is an open-source library with a streamlined and modular API for Quality-Diversity (QD) optimization algorithms in Jax. The library serves as a versatile tool for optimization purposes, ranging from black-box optimization to continuous control. QDax offers implementations of popular QD, Neuroevolution, and Reinforcement Learning (RL) algorithms, supported by various examples. All the implementations can be just-in-time compiled with Jax, facilitating efficient execution across multiple accelerators, including GPUs and TPUs. These implementations effectively demonstrate the framework's flexibility and user-friendliness, easing experimentation for research purposes. Furthermore, the library is thoroughly documented and tested with 95\% coverage.


Evolving Populations of Diverse RL Agents with MAP-Elites

arXiv.org Artificial Intelligence

Quality Diversity (QD) has emerged as a powerful alternative optimization paradigm that aims at generating large and diverse collections of solutions, notably with its flagship algorithm MAP-ELITES (ME) which evolves solutions through mutations and crossovers. While very effective for some unstructured problems, early ME implementations relied exclusively on random search to evolve the population of solutions, rendering them notoriously sample-inefficient for high-dimensional problems, such as when evolving neural networks. Follow-up works considered exploiting gradient information to guide the search in order to address these shortcomings through techniques borrowed from either Black-Box Optimization (BBO) or Reinforcement Learning (RL). While mixing RL techniques with ME unlocked state-of-the-art performance for robotics control problems that require a good amount of exploration, it also plagued these ME variants with limitations common among RL algorithms that ME was free of, such as hyperparameter sensitivity, high stochasticity as well as training instability, including when the population size increases as some components are shared across the population in recent approaches. Furthermore, existing approaches mixing ME with RL tend to be tied to a specific RL algorithm, which effectively prevents their use on problems where the corresponding RL algorithm fails. To address these shortcomings, we introduce a flexible framework that allows the use of any RL algorithm and alleviates the aforementioned limitations by evolving populations of agents (whose definition include hyperparameters and all learnable parameters) instead of just policies. We demonstrate the benefits brought about by our framework through extensive numerical experiments on a number of robotics control problems, some of which with deceptive rewards, taken from the QD-RL literature.