Muhaidat, Sami
Enabling AutoML for Zero-Touch Network Security: Use-Case Driven Analysis
Yang, Li, Rajab, Mirna El, Shami, Abdallah, Muhaidat, Sami
Zero-Touch Networks (ZTNs) represent a state-of-the-art paradigm shift towards fully automated and intelligent network management, enabling the automation and intelligence required to manage the complexity, scale, and dynamic nature of next-generation (6G) networks. ZTNs leverage Artificial Intelligence (AI) and Machine Learning (ML) to enhance operational efficiency, support intelligent decision-making, and ensure effective resource allocation. However, the implementation of ZTNs is subject to security challenges that need to be resolved to achieve their full potential. In particular, two critical challenges arise: the need for human expertise in developing AI/ML-based security mechanisms, and the threat of adversarial attacks targeting AI/ML models. In this survey paper, we provide a comprehensive review of current security issues in ZTNs, emphasizing the need for advanced AI/ML-based security mechanisms that require minimal human intervention and protect AI/ML models themselves. Furthermore, we explore the potential of Automated ML (AutoML) technologies in developing robust security solutions for ZTNs. Through case studies, we illustrate practical approaches to securing ZTNs against both conventional and AI/ML-specific threats, including the development of autonomous intrusion detection systems and strategies to combat Adversarial ML (AML) attacks. The paper concludes with a discussion of the future research directions for the development of ZTN security approaches.
Towards Zero Touch Networks: Cross-Layer Automated Security Solutions for 6G Wireless Networks
Yang, Li, Naser, Shimaa, Shami, Abdallah, Muhaidat, Sami, Ong, Lyndon, Debbah, Mérouane
The transition from 5G to 6G mobile networks necessitates network automation to meet the escalating demands for high data rates, ultra-low latency, and integrated technology. Recently, Zero-Touch Networks (ZTNs), driven by Artificial Intelligence (AI) and Machine Learning (ML), are designed to automate the entire lifecycle of network operations with minimal human intervention, presenting a promising solution for enhancing automation in 5G/6G networks. However, the implementation of ZTNs brings forth the need for autonomous and robust cybersecurity solutions, as ZTNs rely heavily on automation. AI/ML algorithms are widely used to develop cybersecurity mechanisms, but require substantial specialized expertise and encounter model drift issues, posing significant challenges in developing autonomous cybersecurity measures. Therefore, this paper proposes an automated security framework targeting Physical Layer Authentication (PLA) and Cross-Layer Intrusion Detection Systems (CLIDS) to address security concerns at multiple Internet protocol layers. The proposed framework employs drift-adaptive online learning techniques and a novel enhanced Successive Halving (SH)-based Automated ML (AutoML) method to automatically generate optimized ML models for dynamic networking environments. Experimental results illustrate that the proposed framework achieves high performance on the public Radio Frequency (RF) fingerprinting and the Canadian Institute for CICIDS2017 datasets, showcasing its effectiveness in addressing PLA and CLIDS tasks within dynamic and complex networking environments. Furthermore, the paper explores open challenges and research directions in the 5G/6G cybersecurity domain. This framework represents a significant advancement towards fully autonomous and secure 6G networks, paving the way for future innovations in network automation and cybersecurity.
A Survey on Large Language Models for Communication, Network, and Service Management: Application Insights, Challenges, and Future Directions
Boateng, Gordon Owusu, Sami, Hani, Alagha, Ahmed, Elmekki, Hanae, Hammoud, Ahmad, Mizouni, Rabeb, Mourad, Azzam, Otrok, Hadi, Bentahar, Jamal, Muhaidat, Sami, Talhi, Chamseddine, Dziong, Zbigniew, Guizani, Mohsen
The rapid evolution of communication networks in recent decades has intensified the need for advanced Network and Service Management (NSM) strategies to address the growing demands for efficiency, scalability, enhanced performance, and reliability of these networks. Large Language Models (LLMs) have received tremendous attention due to their unparalleled capabilities in various Natural Language Processing (NLP) tasks and generating context-aware insights, offering transformative potential for automating diverse communication NSM tasks. Contrasting existing surveys that consider a single network domain, this survey investigates the integration of LLMs across different communication network domains, including mobile networks and related technologies, vehicular networks, cloud-based networks, and fog/edge-based networks. First, the survey provides foundational knowledge of LLMs, explicitly detailing the generic transformer architecture, general-purpose and domain-specific LLMs, LLM model pre-training and fine-tuning, and their relation to communication NSM. Under a novel taxonomy of network monitoring and reporting, AI-powered network planning, network deployment and distribution, and continuous network support, we extensively categorize LLM applications for NSM tasks in each of the different network domains, exploring existing literature and their contributions thus far. Then, we identify existing challenges and open issues, as well as future research directions for LLM-driven communication NSM, emphasizing the need for scalable, adaptable, and resource-efficient solutions that align with the dynamic landscape of communication networks. We envision that this survey serves as a holistic roadmap, providing critical insights for leveraging LLMs to enhance NSM.
TeleOracle: Fine-Tuned Retrieval-Augmented Generation with Long-Context Support for Network
Alabbasi, Nouf, Erak, Omar, Alhussein, Omar, Lotfi, Ismail, Muhaidat, Sami, Debbah, Merouane
The telecommunications industry's rapid evolution demands intelligent systems capable of managing complex networks and adapting to emerging technologies. While large language models (LLMs) show promise in addressing these challenges, their deployment in telecom environments faces significant constraints due to edge device limitations and inconsistent documentation. To bridge this gap, we present TeleOracle, a telecom-specialized retrieval-augmented generation (RAG) system built on the Phi-2 small language model (SLM). To improve context retrieval, TeleOracle employs a two-stage retriever that incorporates semantic chunking and hybrid keyword and semantic search. Additionally, we expand the context window during inference to enhance the model's performance on open-ended queries. We also employ low-rank adaption for efficient fine-tuning. A thorough analysis of the model's performance indicates that our RAG framework is effective in aligning Phi-2 to the telecom domain in a downstream question and answer (QnA) task, achieving a 30% improvement in accuracy over the base Phi-2 model, reaching an overall accuracy of 81.20%. Notably, we show that our model not only performs on par with the much larger LLMs but also achieves a higher faithfulness score, indicating higher adherence to the retrieved context.
LPUF-AuthNet: A Lightweight PUF-Based IoT Authentication via Tandem Neural Networks and Split Learning
Mefgouda, Brahim, Khan, Raviha, Alhussein, Omar, Saleh, Hani, Eldeeb, Hossien B., Pandey, Anshul, Muhaidat, Sami
By 2025, the internet of things (IoT) is projected to connect over 75 billion devices globally, fundamentally altering how we interact with our environments in both urban and rural settings. However, IoT device security remains challenging, particularly in the authentication process. Traditional cryptographic methods often struggle with the constraints of IoT devices, such as limited computational power and storage. This paper considers physical unclonable functions (PUFs) as robust security solutions, utilizing their inherent physical uniqueness to authenticate devices securely. However, traditional PUF systems are vulnerable to machine learning (ML) attacks and burdened by large datasets. Our proposed solution introduces a lightweight PUF mechanism, called LPUF-AuthNet, combining tandem neural networks (TNN) with a split learning (SL) paradigm. The proposed approach provides scalability, supports mutual authentication, and enhances security by resisting various types of attacks, paving the way for secure integration into future 6G technologies.
Large Language Model-Driven Curriculum Design for Mobile Networks
Erak, Omar, Alhussein, Omar, Naser, Shimaa, Alabbasi, Nouf, Mi, De, Muhaidat, Sami
This study introduces an innovative framework that employs large language models (LLMs) to automate the design and generation of curricula for reinforcement learning (RL). As mobile networks evolve towards the 6G era, managing their increasing complexity and dynamic nature poses significant challenges. Conventional RL approaches often suffer from slow convergence and poor generalization due to conflicting objectives and the large state and action spaces associated with mobile networks. To address these shortcomings, we introduce curriculum learning, a method that systematically exposes the RL agent to progressively challenging tasks, improving convergence and generalization. However, curriculum design typically requires extensive domain knowledge and manual human effort. Our framework mitigates this by utilizing the generative capabilities of LLMs to automate the curriculum design process, significantly reducing human effort while improving the RL agent's convergence and performance. We deploy our approach within a simulated mobile network environment and demonstrate improved RL convergence rates, generalization to unseen scenarios, and overall performance enhancements. As a case study, we consider autonomous coordination and user association in mobile networks. Our obtained results highlight the potential of combining LLM-based curriculum generation with RL for managing next-generation wireless networks, marking a significant step towards fully autonomous network operations.
Active ML for 6G: Towards Efficient Data Generation, Acquisition, and Annotation
Alhussein, Omar, Zhang, Ning, Muhaidat, Sami, Zhuang, Weihua
This paper explores the integration of active machine learning (ML) for 6G networks, an area that remains under-explored yet holds potential. Unlike passive ML systems, active ML can be made to interact with the network environment. It actively selects informative and representative data points for training, thereby reducing the volume of data needed while accelerating the learning process. While active learning research mainly focuses on data annotation, we call for a network-centric active learning framework that considers both annotation (i.e., what is the label) and data acquisition (i.e., which and how many samples to collect). Moreover, we explore the synergy between generative artificial intelligence (AI) and active learning to overcome existing limitations in both active learning and generative AI. This paper also features a case study on a mmWave throughput prediction problem to demonstrate the practical benefits and improved performance of active learning for 6G networks. Furthermore, we discuss how the implications of active learning extend to numerous 6G network use cases. We highlight the potential of active learning based 6G networks to enhance computational efficiency, data annotation and acquisition efficiency, adaptability, and overall network intelligence. We conclude with a discussion on challenges and future research directions for active learning in 6G networks, including development of novel query strategies, distributed learning integration, and inclusion of human- and machine-in-the-loop learning.
Leveraging Large Language Models for DRL-Based Anti-Jamming Strategies in Zero Touch Networks
Ali, Abubakar S., Manias, Dimitrios Michael, Shami, Abdallah, Muhaidat, Sami
As the dawn of sixth-generation (6G) networking approaches, it promises unprecedented advancements in communication and automation. Among the leading innovations of 6G is the concept of Zero Touch Networks (ZTNs), aiming to achieve fully automated, self-optimizing networks with minimal human intervention. Despite the advantages ZTNs offer in terms of efficiency and scalability, challenges surrounding transparency, adaptability, and human trust remain prevalent. Concurrently, the advent of Large Language Models (LLMs) presents an opportunity to elevate the ZTN framework by bridging the gap between automated processes and human-centric interfaces. This paper explores the integration of LLMs into ZTNs, highlighting their potential to enhance network transparency and improve user interactions. Through a comprehensive case study on deep reinforcement learning (DRL)-based anti-jamming technique, we demonstrate how LLMs can distill intricate network operations into intuitive, human-readable reports. Additionally, we address the technical and ethical intricacies of melding LLMs with ZTNs, with an emphasis on data privacy, transparency, and bias reduction. Looking ahead, we identify emerging research avenues at the nexus of LLMs and ZTNs, advocating for sustained innovation and interdisciplinary synergy in the domain of automated networks.
Enhancing Reliability in Federated mmWave Networks: A Practical and Scalable Solution using Radar-Aided Dynamic Blockage Recognition
Al-Quraan, Mohammad, Zoha, Ahmed, Centeno, Anthony, Salameh, Haythem Bany, Muhaidat, Sami, Imran, Muhammad Ali, Mohjazi, Lina
This article introduces a new method to improve the dependability of millimeter-wave (mmWave) and terahertz (THz) network services in dynamic outdoor environments. In these settings, line-of-sight (LoS) connections are easily interrupted by moving obstacles like humans and vehicles. The proposed approach, coined as Radar-aided Dynamic blockage Recognition (RaDaR), leverages radar measurements and federated learning (FL) to train a dual-output neural network (NN) model capable of simultaneously predicting blockage status and time. This enables determining the optimal point for proactive handover (PHO) or beam switching, thereby reducing the latency introduced by 5G new radio procedures and ensuring high quality of experience (QoE). The framework employs radar sensors to monitor and track objects movement, generating range-angle and range-velocity maps that are useful for scene analysis and predictions. Moreover, FL provides additional benefits such as privacy protection, scalability, and knowledge sharing. The framework is assessed using an extensive real-world dataset comprising mmWave channel information and radar data. The evaluation results show that RaDaR substantially enhances network reliability, achieving an average success rate of 94% for PHO compared to existing reactive HO procedures that lack proactive blockage prediction. Additionally, RaDaR maintains a superior QoE by ensuring sustained high throughput levels and minimising PHO latency.
Edge-Native Intelligence for 6G Communications Driven by Federated Learning: A Survey of Trends and Challenges
Al-Quraan, Mohammad, Mohjazi, Lina, Bariah, Lina, Centeno, Anthony, Zoha, Ahmed, Muhaidat, Sami, Debbah, Mérouane, Imran, Muhammad Ali
The unprecedented surge of data volume in wireless networks empowered with artificial intelligence (AI) opens up new horizons for providing ubiquitous data-driven intelligent services. Traditional cloud-centric machine learning (ML)-based services are implemented by collecting datasets and training models centrally. However, this conventional training technique encompasses two challenges: (i) high communication and energy cost due to increased data communication, (ii) threatened data privacy by allowing untrusted parties to utilise this information. Recently, in light of these limitations, a new emerging technique, coined as federated learning (FL), arose to bring ML to the edge of wireless networks. FL can extract the benefits of data silos by training a global model in a distributed manner, orchestrated by the FL server. FL exploits both decentralised datasets and computing resources of participating clients to develop a generalised ML model without compromising data privacy. In this article, we introduce a comprehensive survey of the fundamentals and enabling technologies of FL. Moreover, an extensive study is presented detailing various applications of FL in wireless networks and highlighting their challenges and limitations. The efficacy of FL is further explored with emerging prospective beyond fifth generation (B5G) and sixth generation (6G) communication systems. The purpose of this survey is to provide an overview of the state-of-the-art of FL applications in key wireless technologies that will serve as a foundation to establish a firm understanding of the topic. Lastly, we offer a road forward for future research directions.