Goto

Collaborating Authors

 Manzoni, Andrea


Reduced Order Modeling with Shallow Recurrent Decoder Networks

arXiv.org Artificial Intelligence

Reduced Order Modeling is of paramount importance for efficiently inferring high-dimensional spatio-temporal fields in parametric contexts, enabling computationally tractable parametric analyses, uncertainty quantification and control. However, conventional dimensionality reduction techniques are typically limited to known and constant parameters, inefficient for nonlinear and chaotic dynamics, and uninformed to the actual system behavior. In this work, we propose sensor-driven SHallow REcurrent Decoder networks for Reduced Order Modeling (SHRED-ROM). Specifically, we consider the composition of a long short-term memory network, which encodes the temporal dynamics of limited sensor data in multiple scenarios, and a shallow decoder, which reconstructs the corresponding high-dimensional states. SHRED-ROM is a robust decoding-only strategy that circumvents the numerically unstable approximation of an inverse which is required by encoding-decoding schemes. To enhance computational efficiency and memory usage, the full-order state snapshots are reduced by, e.g., proper orthogonal decomposition, allowing for compressive training of the networks with minimal hyperparameter tuning. Through applications on chaotic and nonlinear fluid dynamics, we show that SHRED-ROM (i) accurately reconstructs the state dynamics for new parameter values starting from limited fixed or mobile sensors, independently on sensor placement, (ii) can cope with both physical, geometrical and time-dependent parametric dependencies, while being agnostic to their actual values, (iii) can accurately estimate unknown parameters, and (iv) can deal with different data sources, such as high-fidelity simulations, coupled fields and videos.


HypeRL: Parameter-Informed Reinforcement Learning for Parametric PDEs

arXiv.org Artificial Intelligence

In this work, we devise a new, general-purpose reinforcement learning strategy for the optimal control of parametric partial differential equations (PDEs). Such problems frequently arise in applied sciences and engineering and entail a significant complexity when control and/or state variables are distributed in high-dimensional space or depend on varying parameters. Traditional numerical methods, relying on either iterative minimization algorithms or dynamic programming, while reliable, often become computationally infeasible. Indeed, in either way, the optimal control problem must be solved for each instance of the parameters, and this is out of reach when dealing with high-dimensional time-dependent and parametric PDEs. In this paper, we propose HypeRL, a deep reinforcement learning (DRL) framework to overcome the limitations shown by traditional methods. HypeRL aims at approximating the optimal control policy directly. Specifically, we employ an actor-critic DRL approach to learn an optimal feedback control strategy that can generalize across the range of variation of the parameters. To effectively learn such optimal control laws, encoding the parameter information into the DRL policy and value function neural networks (NNs) is essential. To do so, HypeRL uses two additional NNs, often called hypernetworks, to learn the weights and biases of the value function and the policy NNs. We validate the proposed approach on two PDE-constrained optimal control benchmarks, namely a 1D Kuramoto-Sivashinsky equation and a 2D Navier-Stokes equations, by showing that the knowledge of the PDE parameters and how this information is encoded, i.e., via a hypernetwork, is an essential ingredient for learning parameter-dependent control policies that can generalize effectively to unseen scenarios and for improving the sample efficiency of such policies.


Latent feedback control of distributed systems in multiple scenarios through deep learning-based reduced order models

arXiv.org Artificial Intelligence

Continuous monitoring and real-time control of high-dimensional distributed systems are often crucial in applications to ensure a desired physical behavior, without degrading stability and system performances. Traditional feedback control design that relies on full-order models, such as high-dimensional state-space representations or partial differential equations, fails to meet these requirements due to the delay in the control computation, which requires multiple expensive simulations of the physical system. The computational bottleneck is even more severe when considering parametrized systems, as new strategies have to be determined for every new scenario. To address these challenges, we propose a real-time closed-loop control strategy enhanced by nonlinear non-intrusive Deep Learning-based Reduced Order Models (DL-ROMs). Specifically, in the offline phase, (i) full-order state-control pairs are generated for different scenarios through the adjoint method, (ii) the essential features relevant for control design are extracted from the snapshots through a combination of Proper Orthogonal Decomposition (POD) and deep autoencoders, and (iii) the low-dimensional policy bridging latent control and state spaces is approximated with a feedforward neural network. After data generation and neural networks training, the optimal control actions are retrieved in real-time for any observed state and scenario. In addition, the dynamics may be approximated through a cheap surrogate model in order to close the loop at the latent level, thus continuously controlling the system in real-time even when full-order state measurements are missing. The effectiveness of the proposed method, in terms of computational speed, accuracy, and robustness against noisy data, is finally assessed on two different high-dimensional optimal transport problems, one of which also involving an underlying fluid flow.


Handling geometrical variability in nonlinear reduced order modeling through Continuous Geometry-Aware DL-ROMs

arXiv.org Artificial Intelligence

Deep Learning-based Reduced Order Models (DL-ROMs) provide nowadays a well-established class of accurate surrogate models for complex physical systems described by parametrized PDEs, by nonlinearly compressing the solution manifold into a handful of latent coordinates. Until now, design and application of DL-ROMs mainly focused on physically parameterized problems. Within this work, we provide a novel extension of these architectures to problems featuring geometrical variability and parametrized domains, namely, we propose Continuous Geometry-Aware DL-ROMs (CGA-DL-ROMs). In particular, the space-continuous nature of the proposed architecture matches the need to deal with multi-resolution datasets, which are quite common in the case of geometrically parametrized problems. Moreover, CGA-DL-ROMs are endowed with a strong inductive bias that makes them aware of geometrical parametrizations, thus enhancing both the compression capability and the overall performance of the architecture. Within this work, we justify our findings through a thorough theoretical analysis, and we practically validate our claims by means of a series of numerical tests encompassing physically-and-geometrically parametrized PDEs, ranging from the unsteady Navier-Stokes equations for fluid dynamics to advection-diffusion-reaction equations for mathematical biology.


Interpretable and Efficient Data-driven Discovery and Control of Distributed Systems

arXiv.org Artificial Intelligence

Feedback control for complex physical systems is essential in many fields of Engineering and Applied Sciences, which are typically governed by Partial Differential Equations (PDEs). In these cases, the state of the systems is often challenging or even impossible to observe completely, the systems exhibit nonlinear dynamics, and require low-latency feedback control [BNK20]; [PK20]; [KJ20]. Consequently, effectively controlling these systems is a computationally intensive task. For instance, significant efforts have been devoted in the last decade to the investigation of optimal control problems governed by PDEs [Hin+08]; [MQS22]; however, classical feedback control strategies face limitations with such highly complex dynamical systems. For instance, (nonlinear) model predictive control (MPC) [GP17] has emerged as an effective and important control paradigm. MPC utilizes an internal model of the dynamics to create a feedback loop and provide optimal controls, resulting in a difficult trade-off between model accuracy and computational performance. Despite its impressive success in disciplines such as robotics [Wil+18] and controlling PDEs [Alt14], MPC struggles with real-time applicability in providing low-latency actuation, due to the need for solving complex optimization problems. In recent years, reinforcement learning (RL), particularly deep reinforcement learning (DRL) [SB18], an extension of RL relying on deep neural networks (DNN), has gained popularity as a powerful and real-time applicable control paradigm. Especially in the context of solving PDEs, DRL has demonstrated outstanding capabilities in controlling complex and high-dimensional dynamical systems at low latency [You+23]; [Pei+23]; [BF24]; [Vin24].


VENI, VINDy, VICI: a variational reduced-order modeling framework with uncertainty quantification

arXiv.org Artificial Intelligence

The simulation of many complex phenomena in engineering and science requires solving expensive, high-dimensional systems of partial differential equations (PDEs). To circumvent this, reduced-order models (ROMs) have been developed to speed up computations. However, when governing equations are unknown or partially known, typically ROMs lack interpretability and reliability of the predicted solutions. In this work we present a data-driven, non-intrusive framework for building ROMs where the latent variables and dynamics are identified in an interpretable manner and uncertainty is quantified. Starting from a limited amount of high-dimensional, noisy data the proposed framework constructs an efficient ROM by leveraging variational autoencoders for dimensionality reduction along with a newly introduced, variational version of sparse identification of nonlinear dynamics (SINDy), which we refer to as Variational Identification of Nonlinear Dynamics (VINDy). In detail, the method consists of Variational Encoding of Noisy Inputs (VENI) to identify the distribution of reduced coordinates. Simultaneously, we learn the distribution of the coefficients of a pre-determined set of candidate functions by VINDy. Once trained offline, the identified model can be queried for new parameter instances and new initial conditions to compute the corresponding full-time solutions. The probabilistic setup enables uncertainty quantification as the online testing consists of Variational Inference naturally providing Certainty Intervals (VICI). In this work we showcase the effectiveness of the newly proposed VINDy method in identifying interpretable and accurate dynamical system for the R\"ossler system with different noise intensities and sources. Then the performance of the overall method - named VENI, VINDy, VICI - is tested on PDE benchmarks including structural mechanics and fluid dynamics.


Recurrent Deep Kernel Learning of Dynamical Systems

arXiv.org Machine Learning

Digital twins require computationally-efficient reduced-order models (ROMs) that can accurately describe complex dynamics of physical assets. However, constructing ROMs from noisy high-dimensional data is challenging. In this work, we propose a data-driven, non-intrusive method that utilizes stochastic variational deep kernel learning (SVDKL) to discover low-dimensional latent spaces from data and a recurrent version of SVDKL for representing and predicting the evolution of latent dynamics. The proposed method is demonstrated with two challenging examples -- a double pendulum and a reaction-diffusion system. Results show that our framework is capable of (i) denoising and reconstructing measurements, (ii) learning compact representations of system states, (iii) predicting system evolution in low-dimensional latent spaces, and (iv) quantifying modeling uncertainties.


PTPI-DL-ROMs: pre-trained physics-informed deep learning-based reduced order models for nonlinear parametrized PDEs

arXiv.org Artificial Intelligence

The coupling of Proper Orthogonal Decomposition (POD) and deep learning-based ROMs (DL-ROMs) has proved to be a successful strategy to construct non-intrusive, highly accurate, surrogates for the real time solution of parametric nonlinear time-dependent PDEs. Inexpensive to evaluate, POD-DL-ROMs are also relatively fast to train, thanks to their limited complexity. However, POD-DL-ROMs account for the physical laws governing the problem at hand only through the training data, that are usually obtained through a full order model (FOM) relying on a high-fidelity discretization of the underlying equations. Moreover, the accuracy of POD-DL-ROMs strongly depends on the amount of available data. In this paper, we consider a major extension of POD-DL-ROMs by enforcing the fulfillment of the governing physical laws in the training process -- that is, by making them physics-informed -- to compensate for possible scarce and/or unavailable data and improve the overall reliability. To do that, we first complement POD-DL-ROMs with a trunk net architecture, endowing them with the ability to compute the problem's solution at every point in the spatial domain, and ultimately enabling a seamless computation of the physics-based loss by means of the strong continuous formulation. Then, we introduce an efficient training strategy that limits the notorious computational burden entailed by a physics-informed training phase. In particular, we take advantage of the few available data to develop a low-cost pre-training procedure; then, we fine-tune the architecture in order to further improve the prediction reliability. Accuracy and efficiency of the resulting pre-trained physics-informed DL-ROMs (PTPI-DL-ROMs) are then assessed on a set of test cases ranging from non-affinely parametrized advection-diffusion-reaction equations, to nonlinear problems like the Navier-Stokes equations for fluid flows.


SINDy vs Hard Nonlinearities and Hidden Dynamics: a Benchmarking Study

arXiv.org Artificial Intelligence

In this work we analyze the effectiveness of the Sparse Identification of Nonlinear Dynamics (SINDy) technique on three benchmark datasets for nonlinear identification, to provide a better understanding of its suitability when tackling real dynamical systems. While SINDy can be an appealing strategy for pursuing physics-based learning, our analysis highlights difficulties in dealing with unobserved states and non-smooth dynamics. Due to the ubiquity of these features in real systems in general, and control applications in particular, we complement our analysis with hands-on approaches to tackle these issues in order to exploit SINDy also in these challenging contexts.


A digital twin framework for civil engineering structures

arXiv.org Artificial Intelligence

The digital twin concept represents an appealing opportunity to advance condition-based and predictive maintenance paradigms for civil engineering systems, thus allowing reduced lifecycle costs, increased system safety, and increased system availability. This work proposes a predictive digital twin approach to the health monitoring, maintenance, and management planning of civil engineering structures. The asset-twin coupled dynamical system is encoded employing a probabilistic graphical model, which allows all relevant sources of uncertainty to be taken into account. In particular, the time-repeating observations-to-decisions flow is modeled using a dynamic Bayesian network. Real-time structural health diagnostics are provided by assimilating sensed data with deep learning models. The digital twin state is continually updated in a sequential Bayesian inference fashion. This is then exploited to inform the optimal planning of maintenance and management actions within a dynamic decision-making framework. A preliminary offline phase involves the population of training datasets through a reduced-order numerical model and the computation of a health-dependent control policy. The strategy is assessed on two synthetic case studies, involving a cantilever beam and a railway bridge, demonstrating the dynamic decision-making capabilities of health-aware digital twins.