Fetaya, Ethan
Adversarial Robustness in Parameter-Space Classifiers
Shor, Tamir, Fetaya, Ethan, Baskin, Chaim, Bronstein, Alex
Chaim Baskin School of Electrical and Computer Engineering Ben-Gurion University of the Negev Be'er Sheva, Israel chaimbaskin@bgu.ac.il Implicit Neural Representations (INRs) have been recently garnering increasing interest in various research fields, mainly due to their ability to represent large, complex data in a compact and continuous manner. Past work further showed that numerous popular downstream tasks can be performed directly in the INR parameter-space. Doing so can substantially reduce the computational resources required to process the represented data in their native domain. A major difficulty in using modern machine-learning approaches, is their high susceptibility to adversarial attacks, which have been shown to greatly limit the reliability and applicability of such methods in a wide range of settings. In this work, we show that parameter-space models trained for classification are inherently robust to adversarial attacks - without the need of any robust training. To support our claims, we develop a novel suite of adversarial attacks targeting parameter-space classifiers, and furthermore analyze practical considerations of attacking parameterspace classifiers. Implicit Neural Representations (INRs) are representations of an arbitrary signal as a neural network predicting signal values under some conditioning.
Inverse Problem Sampling in Latent Space Using Sequential Monte Carlo
Achituve, Idan, Habi, Hai Victor, Rosenfeld, Amir, Netzer, Arnon, Diamant, Idit, Fetaya, Ethan
In image processing, solving inverse problems is the task of finding plausible reconstructions of an image that was corrupted by some (usually known) degradation model. Commonly, this process is done using a generative image model that can guide the reconstruction towards solutions that appear natural. The success of diffusion models over the last few years has made them a leading candidate for this task. However, the sequential nature of diffusion models makes this conditional sampling process challenging. Furthermore, since diffusion models are often defined in the latent space of an autoencoder, the encoder-decoder transformations introduce additional difficulties. Here, we suggest a novel sampling method based on sequential Monte Carlo (SMC) in the latent space of diffusion models. We use the forward process of the diffusion model to add additional auxiliary observations and then perform an SMC sampling as part of the backward process. Empirical evaluations on ImageNet and FFHQ show the benefits of our approach over competing methods on various inverse problem tasks.
Estimating the Conformal Prediction Threshold from Noisy Labels
Penso, Coby, Goldberger, Jacob, Fetaya, Ethan
Conformal Prediction (CP) is a method to control prediction uncertainty by producing a small prediction set, ensuring a predetermined probability that the true class lies within this set. This is commonly done by defining a score, based on the model predictions, and setting a threshold on this score using a validation set. In this study, we address the problem of CP calibration when we only have access to a validation set with noisy labels. We show how we can estimate the noise-free conformal threshold based on the noisy labeled data. Our solution is flexible and can accommodate various modeling assumptions regarding the label contamination process, without needing any information about the underlying data distribution or the internal mechanisms of the machine learning classifier. We develop a coverage guarantee for uniform noise that is effective even in tasks with a large number of classes. We dub our approach Noise-Aware Conformal Prediction (NACP) and show on several natural and medical image classification datasets, including ImageNet, that it significantly outperforms current noisy label methods and achieves results comparable to those obtained with a clean validation set.
Bayesian Uncertainty for Gradient Aggregation in Multi-Task Learning
Achituve, Idan, Diamant, Idit, Netzer, Arnon, Chechik, Gal, Fetaya, Ethan
As machine learning becomes more prominent there is a growing demand to perform several inference tasks in parallel. Running a dedicated model for each task is computationally expensive and therefore there is a great interest in multi-task learning (MTL). MTL aims at learning a single model that solves several tasks efficiently. Optimizing MTL models is often achieved by computing a single gradient per task and aggregating them for obtaining a combined update direction. However, these approaches do not consider an important aspect, the sensitivity in the gradient dimensions. Here, we introduce a novel gradient aggregation approach using Bayesian inference. We place a probability distribution over the task-specific parameters, which in turn induce a distribution over the gradients of the tasks. This additional valuable information allows us to quantify the uncertainty in each of the gradients dimensions, which can then be factored in when aggregating them. We empirically demonstrate the benefits of our approach in a variety of datasets, achieving state-of-the-art performance.
Improved Generalization of Weight Space Networks via Augmentations
Shamsian, Aviv, Navon, Aviv, Zhang, David W., Zhang, Yan, Fetaya, Ethan, Chechik, Gal, Maron, Haggai
Learning in deep weight spaces (DWS), where neural networks process the weights of other neural networks, is an emerging research direction, with applications to 2D and 3D neural fields (INRs, NeRFs), as well as making inferences about other types of neural networks. Unfortunately, weight space models tend to suffer from substantial overfitting. We empirically analyze the reasons for this overfitting and find that a key reason is the lack of diversity in DWS datasets. While a given object can be represented by many different weight configurations, typical INR training sets fail to capture variability across INRs that represent the same object. To address this, we explore strategies for data augmentation in weight spaces and propose a MixUp method adapted for weight spaces. We demonstrate the effectiveness of these methods in two setups. In classification, they improve performance similarly to having up to 10 times more data. In self-supervised contrastive learning, they yield substantial 5-10% gains in downstream classification.
Equivariant Deep Weight Space Alignment
Navon, Aviv, Shamsian, Aviv, Fetaya, Ethan, Chechik, Gal, Dym, Nadav, Maron, Haggai
Permutation symmetries of deep networks make basic operations like model merging and similarity estimation challenging. In many cases, aligning the weights of the networks, i.e., finding optimal permutations between their weights, is necessary. Unfortunately, weight alignment is an NP-hard problem. Prior research has mainly focused on solving relaxed versions of the alignment problem, leading to either time-consuming methods or sub-optimal solutions. To accelerate the alignment process and improve its quality, we propose a novel framework aimed at learning to solve the weight alignment problem, which we name Deep-Align. To that end, we first prove that weight alignment adheres to two fundamental symmetries and then, propose a deep architecture that respects these symmetries. Notably, our framework does not require any labeled data. We provide a theoretical analysis of our approach and evaluate Deep-Align on several types of network architectures and learning setups. Our experimental results indicate that a feed-forward pass with Deep-Align produces better or equivalent alignments compared to those produced by current optimization algorithms. Additionally, our alignments can be used as an effective initialization for other methods, leading to improved solutions with a significant speedup in convergence.
Data Augmentations in Deep Weight Spaces
Shamsian, Aviv, Zhang, David W., Navon, Aviv, Zhang, Yan, Kofinas, Miltiadis, Achituve, Idan, Valperga, Riccardo, Burghouts, Gertjan J., Gavves, Efstratios, Snoek, Cees G. M., Fetaya, Ethan, Chechik, Gal, Maron, Haggai
Learning in weight spaces, where neural networks process the weights of other deep neural networks, has emerged as a promising research direction with applications in various fields, from analyzing and editing neural fields and implicit neural representations, to network pruning and quantization. Recent works designed architectures for effective learning in that space, which takes into account its unique, permutation-equivariant, structure. Unfortunately, so far these architectures suffer from severe overfitting and were shown to benefit from large datasets. This poses a significant challenge because generating data for this learning setup is laborious and time-consuming since each data sample is a full set of network weights that has to be trained. In this paper, we address this difficulty by investigating data augmentations for weight spaces, a set of techniques that enable generating new data examples on the fly without having to train additional input weight space elements. We first review several recently proposed data augmentation schemes %that were proposed recently and divide them into categories. We then introduce a novel augmentation scheme based on the Mixup method. We evaluate the performance of these techniques on existing benchmarks as well as new benchmarks we generate, which can be valuable for future studies.
Learning Discrete Weights and Activations Using the Local Reparameterization Trick
Berger, Guy, Navon, Aviv, Fetaya, Ethan
In computer vision and machine learning, a crucial challenge is to lower the computation and memory demands for neural network inference. A commonplace solution to address this challenge is through the use of binarization. By binarizing the network weights and activations, one can significantly reduce computational complexity by substituting the computationally expensive floating operations with faster bitwise operations. This leads to a more efficient neural network inference that can be deployed on low-resource devices. In this work, we extend previous approaches that trained networks with discrete weights using the local reparameterization trick to also allow for discrete activations. The original approach optimized a distribution over the discrete weights and uses the central limit theorem to approximate the pre-activation with a continuous Gaussian distribution. Here we show that the probabilistic modeling can also allow effective training of networks with discrete activation as well. This further reduces runtime and memory footprint at inference time with state-of-the-art results for networks with binary activations.
GD-VDM: Generated Depth for better Diffusion-based Video Generation
Lapid, Ariel, Achituve, Idan, Bracha, Lior, Fetaya, Ethan
The field of generative models has recently witnessed significant progress, with diffusion models showing remarkable performance in image generation. In light of this success, there is a growing interest in exploring the application of diffusion models to other modalities. One such challenge is the generation of coherent videos of complex scenes, which poses several technical difficulties, such as capturing temporal dependencies and generating long, high-resolution videos. This paper proposes GD-VDM, a novel diffusion model for video generation, demonstrating promising results. GD-VDM is based on a two-phase generation process involving generating depth videos followed by a novel diffusion Vid2Vid model that generates a coherent real-world video. We evaluated GD-VDM on the Cityscapes dataset and found that it generates more diverse and complex scenes compared to natural baselines, demonstrating the efficacy of our approach. Our implementation is available at https://github.com/lapid92/GD-VDM
Auxiliary Learning as an Asymmetric Bargaining Game
Shamsian, Aviv, Navon, Aviv, Glazer, Neta, Kawaguchi, Kenji, Chechik, Gal, Fetaya, Ethan
Auxiliary learning is an effective method for enhancing the generalization capabilities of trained models, particularly when dealing with small datasets. However, this approach may present several difficulties: (i) optimizing multiple objectives can be more challenging, and (ii) how to balance the auxiliary tasks to best assist the main task is unclear. In this work, we propose a novel approach, named AuxiNash, for balancing tasks in auxiliary learning by formalizing the problem as generalized bargaining game with asymmetric task bargaining power. Furthermore, we describe an efficient procedure for learning the bargaining power of tasks based on their contribution to the performance of the main task and derive theoretical guarantees for its convergence. Finally, we evaluate AuxiNash on multiple multi-task benchmarks and find that it consistently outperforms competing methods.