Goto

Collaborating Authors

 Feng, Xue


FedOSAA: Improving Federated Learning with One-Step Anderson Acceleration

arXiv.org Artificial Intelligence

Federated learning (FL) is a distributed machine learning approach that enables multiple local clients and a central server to collaboratively train a model while keeping the data on their own devices. First-order methods, particularly those incorporating variance reduction techniques, are the most widely used FL algorithms due to their simple implementation and stable performance. However, these methods tend to be slow and require a large number of communication rounds to reach the global minimizer. We propose FedOSAA, a novel approach that preserves the simplicity of first-order methods while achieving the rapid convergence typically associated with second-order methods. Our approach applies one Anderson acceleration (AA) step following classical local updates based on first-order methods with variance reduction, such as FedSVRG and SCAFFOLD, during local training. This AA step is able to leverage curvature information from the history points and gives a new update that approximates the Newton-GMRES direction, thereby significantly improving the convergence. We establish a local linear convergence rate to the global minimizer of FedOSAA for smooth and strongly convex loss functions. Numerical comparisons show that FedOSAA substantially improves the communication and computation efficiency of the original first-order methods, achieving performance comparable to second-order methods like GIANT.


ValuePilot: A Two-Phase Framework for Value-Driven Decision-Making

arXiv.org Artificial Intelligence

Despite recent advances in artificial intelligence (AI), it poses challenges to ensure personalized decision-making in tasks that are not considered in training datasets. To address this issue, we propose ValuePilot, a two-phase value-driven decision-making framework comprising a dataset generation toolkit DGT and a decision-making module DMM trained on the generated data. DGT is capable of generating scenarios based on value dimensions and closely mirroring real-world tasks, with automated filtering techniques and human curation to ensure the validity of the dataset. In the generated dataset, DMM learns to recognize the inherent values of scenarios, computes action feasibility and navigates the trade-offs between multiple value dimensions to make personalized decisions. Extensive experiments demonstrate that, given human value preferences, our DMM most closely aligns with human decisions, outperforming Claude-3.5-Sonnet, Gemini-2-flash, Llama-3.1-405b and GPT-4o. This research is a preliminary exploration of value-driven decision-making. We hope it will stimulate interest in value-driven decision-making and personalized decision-making within the community.


A Unified Knowledge-Distillation and Semi-Supervised Learning Framework to Improve Industrial Ads Delivery Systems

arXiv.org Artificial Intelligence

Industrial ads ranking systems conventionally rely on labeled impression data, which leads to challenges such as overfitting, slower incremental gain from model scaling, and biases due to discrepancies between training and serving data. To overcome these issues, we propose a Unified framework for Knowledge-Distillation and Semi-supervised Learning (UKDSL) for ads ranking, empowering the training of models on a significantly larger and more diverse datasets, thereby reducing overfitting and mitigating training-serving data discrepancies. We provide detailed formal analysis and numerical simulations on the inherent miscalibration and prediction bias of multi-stage ranking systems, and show empirical evidence of the proposed framework's capability to mitigate those. Compared to prior work, UKDSL can enable models to learn from a much larger set of unlabeled data, hence, improving the performance while being computationally efficient. Finally, we report the successful deployment of UKDSL in an industrial setting across various ranking models, serving users at multi-billion scale, across various surfaces, geological locations, clients, and optimize for various events, which to the best of our knowledge is the first of its kind in terms of the scale and efficiency at which it operates.


Beyond Self-Consistency: Loss-Balanced Perturbation-Based Regularization Improves Industrial-Scale Ads Ranking

arXiv.org Artificial Intelligence

Perturbation-based regularization techniques address many challenges in industrial-scale large models, particularly with sparse labels, and emphasize consistency and invariance for perturbation in model predictions. One of the popular regularization techniques has been various forms of self-consistency, which involve making small modifications to input data while preserving contextual information and enforcing similar predictions through auxiliary loss functions. In this work, we explore the first successful application of perturbation-based regularization algorithms in large-scale ads ranking models, and further propose a novel regularization algorithm, namely, Loss-Balanced Small Perturbation Regularization (LSPR) that can be used in potentially any deep learning model. We have successfully demonstrate that both Self-Consistency Regularization approaches (SCR) and LSPR are scalable and can improve ads delivery systems. By conducting industrial-scale experiments, and numerical analysis, we additionally show that our proposed LSPR, performs consistently better compared to SCR, across various groups and signal availability setups. Finally, we report a successful application of the proposed LSPR in a billion-scale industrial ranking system, which to the best of our knowledge, is the first of its kind, and it is specially designed to address the various scalability challenges (e.g, various surfaces, geological locations, clients and so on) as we will mention in this paper.


Personalized Interpolation: An Efficient Method to Tame Flexible Optimization Window Estimation

arXiv.org Artificial Intelligence

In the realm of online advertising, optimizing conversions is crucial for delivering relevant products to users and enhancing business outcomes. Predicting conversion events is challenging due to variable delays between user interactions, such as impressions or clicks, and the actual conversions. These delays differ significantly across various advertisers and products, necessitating distinct optimization time windows for targeted conversions. To address this, we introduce a novel approach named the \textit{Personalized Interpolation} method, which innovatively builds upon existing fixed conversion window models to estimate flexible conversion windows. This method allows for the accurate estimation of conversions across a variety of delay ranges, thus meeting the diverse needs of advertisers without increasing system complexity. To validate the efficacy of our proposed method, we conducted comprehensive experiments using ads conversion model. Our experiments demonstrate that this method not only achieves high prediction accuracy but also does so more efficiently than other existing solutions. This validation underscores the potential of our Personalized Interpolation method to significantly enhance conversion optimization in real-world online advertising systems, promising improved targeting and effectiveness in advertising strategies.


AdaSociety: An Adaptive Environment with Social Structures for Multi-Agent Decision-Making

arXiv.org Artificial Intelligence

Traditional interactive environments limit agents' intelligence growth with fixed tasks. Recently, single-agent environments address this by generating new tasks based on agent actions, enhancing task diversity. We consider the decision-making problem in multi-agent settings, where tasks are further influenced by social connections, affecting rewards and information access. However, existing multi-agent environments lack a combination of adaptive physical surroundings and social connections, hindering the learning of intelligent behaviors. To address this, we introduce AdaSociety, a customizable multi-agent environment featuring expanding state and action spaces, alongside explicit and alterable social structures. As agents progress, the environment adaptively generates new tasks with social structures for agents to undertake. In AdaSociety, we develop three mini-games showcasing distinct social structures and tasks. Initial results demonstrate that specific social structures can promote both individual and collective benefits, though current reinforcement learning and LLM-based algorithms show limited effectiveness in leveraging social structures to enhance performance. Overall, AdaSociety serves as a valuable research platform for exploring intelligence in diverse physical and social settings.


Causal Graph Guided Steering of LLM Values via Prompts and Sparse Autoencoders

arXiv.org Artificial Intelligence

As large language models (LLMs) become increasingly integrated into critical applications, aligning their behavior with human values presents significant challenges. Current methods, such as Reinforcement Learning from Human Feedback (RLHF), often focus on a limited set of values and can be resource-intensive. Furthermore, the correlation between values has been largely overlooked and remains underutilized. Our framework addresses this limitation by mining a causal graph that elucidates the implicit relationships among various values within the LLMs. Leveraging the causal graph, we implement two lightweight mechanisms for value steering: prompt template steering and Sparse Autoencoder feature steering, and analyze the effects of altering one value dimension on others. Extensive experiments conducted on Gemma-2B-IT and Llama3-8B-IT demonstrate the effectiveness and controllability of our steering methods.


Preference Discerning with LLM-Enhanced Generative Retrieval

arXiv.org Machine Learning

Sequential recommendation systems aim to provide personalized recommendations for users based on their interaction history. To achieve this, they often incorporate auxiliary information, such as textual descriptions of items and auxiliary tasks, like predicting user preferences and intent. Despite numerous efforts to enhance these models, they still suffer from limited personalization. To address this issue, we propose a new paradigm, which we term preference discerning. In preference dscerning, we explicitly condition a generative sequential recommendation system on user preferences within its context. To this end, we generate user preferences using Large Language Models (LLMs) based on user reviews and item-specific data. To evaluate preference discerning capabilities of sequential recommendation systems, we introduce a novel benchmark that provides a holistic evaluation across various scenarios, including preference steering and sentiment following. We assess current state-of-the-art methods using our benchmark and show that they struggle to accurately discern user preferences. Therefore, we propose a new method named Mender ($\textbf{M}$ultimodal Prefer$\textbf{en}$ce $\textbf{d}$iscern$\textbf{er}$), which improves upon existing methods and achieves state-of-the-art performance on our benchmark. Our results show that Mender can be effectively guided by human preferences even though they have not been observed during training, paving the way toward more personalized sequential recommendation systems. We will open-source the code and benchmarks upon publication.


Unifying Generative and Dense Retrieval for Sequential Recommendation

arXiv.org Artificial Intelligence

Sequential dense retrieval models utilize advanced sequence learning techniques to compute item and user representations, which are then used to rank relevant items for a user through inner product computation between the user and all item representations. However, this approach requires storing a unique representation for each item, resulting in significant memory requirements as the number of items grow. In contrast, the recently proposed generative retrieval paradigm offers a promising alternative by directly predicting item indices using a generative model trained on semantic IDs that encapsulate items' semantic information. Despite its potential for large-scale applications, a comprehensive comparison between generative retrieval and sequential dense retrieval under fair conditions is still lacking, leaving open questions regarding performance, and computation trade-offs. To address this, we compare these two approaches under controlled conditions on academic benchmarks and propose LIGER (LeveragIng dense retrieval for GEnerative Retrieval), a hybrid model that combines the strengths of these two widely used methods. LIGER integrates sequential dense retrieval into generative retrieval, mitigating performance differences and enhancing cold-start item recommendation in the datasets evaluated. This hybrid approach provides insights into the trade-offs between these approaches and demonstrates improvements in efficiency and effectiveness for recommendation systems in small-scale benchmarks.


MultiBalance: Multi-Objective Gradient Balancing in Industrial-Scale Multi-Task Recommendation System

arXiv.org Artificial Intelligence

In industrial recommendation systems, multi-task learning (learning multiple tasks simultaneously on a single model) is a predominant approach to save training/serving resources and improve recommendation performance via knowledge transfer between the joint learning tasks. However, multi-task learning often suffers from negative transfer: one or several tasks are less optimized than training them separately. To carefully balance the optimization, we propose a gradient balancing approach called MultiBalance, which is suitable for industrial-scale multi-task recommendation systems. It balances the per-task gradients to alleviate the negative transfer, while saving the huge cost for grid search or manual explorations for appropriate task weights. Moreover, compared with prior work that normally balance the per-task gradients of shared parameters, MultiBalance is more efficient since only requiring to access per-task gradients with respect to the shared feature representations. We conduct experiments on Meta's large-scale ads and feeds multi-task recommendation system, and observe that MultiBalance achieves significant gains (e.g., 0.738% improvement for normalized entropy (NE)) with neutral training cost in Queries Per Second (QPS), which is significantly more efficient than prior methods that balance per-task gradients of shared parameters with 70~80% QPS degradation.