Goto

Collaborating Authors

 Barbero, Federico


Interpreting the Repeated Token Phenomenon in Large Language Models

arXiv.org Artificial Intelligence

Large Language Models (LLMs), despite their impressive capabilities, often fail to accurately repeat a single word when prompted to, and instead output unrelated text. This unexplained failure mode represents a vulnerability, allowing even end-users to diverge models away from their intended behavior. We aim to explain the causes for this phenomenon and link it to the concept of ``attention sinks'', an emergent LLM behavior crucial for fluency, in which the initial token receives disproportionately high attention scores. Our investigation identifies the neural circuit responsible for attention sinks and shows how long repetitions disrupt this circuit. We extend this finding to other non-repeating sequences that exhibit similar circuit disruptions. To address this, we propose a targeted patch that effectively resolves the issue without negatively impacting the model's overall performance. This study provides a mechanistic explanation for an LLM vulnerability, demonstrating how interpretability can diagnose and address issues, and offering insights that pave the way for more secure and reliable models.


On Vanishing Gradients, Over-Smoothing, and Over-Squashing in GNNs: Bridging Recurrent and Graph Learning

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) are models that leverage the graph structure to transmit information between nodes, typically through the message-passing operation. While widely successful, this approach is well known to suffer from the over-smoothing and over-squashing phenomena, which result in representational collapse as the number of layers increases and insensitivity to the information contained at distant and poorly connected nodes, respectively. In this paper, we present a unified view of these problems through the lens of vanishing gradients, using ideas from linear control theory for our analysis. We propose an interpretation of GNNs as recurrent models and empirically demonstrate that a simple state-space formulation of a GNN effectively alleviates over-smoothing and over-squashing at no extra trainable parameter cost. Further, we show theoretically and empirically that (i) GNNs are by design prone to extreme gradient vanishing even after a few layers; (ii) Over-smoothing is directly related to the mechanism causing vanishing gradients; (iii) Over-squashing is most easily alleviated by a combination of graph rewiring and vanishing gradient mitigation. We believe our work will help bridge the gap between the recurrent and graph neural network literature and will unlock the design of new deep and performant GNNs.


Enhancing the Expressivity of Temporal Graph Networks through Source-Target Identification

arXiv.org Artificial Intelligence

Despite the successful application of Temporal Graph Networks (TGNs) for tasks such as dynamic node classification and link prediction, they still perform poorly on the task of dynamic node affinity prediction -- where the goal is to predict 'how much' two nodes will interact in the future. In fact, simple heuristic approaches such as persistent forecasts and moving averages over ground-truth labels significantly and consistently outperform TGNs. Building on this observation, we find that computing heuristics over messages is an equally competitive approach, outperforming TGN and all current temporal graph (TG) models on dynamic node affinity prediction. In this paper, we prove that no formulation of TGN can represent persistent forecasting or moving averages over messages, and propose to enhance the expressivity of TGNs by adding source-target identification to each interaction event message. We show that this modification is required to represent persistent forecasting, moving averages, and the broader class of autoregressive models over messages. Our proposed method, TGNv2, significantly outperforms TGN and all current TG models on all Temporal Graph Benchmark (TGB) dynamic node affinity prediction datasets.


Round and Round We Go! What makes Rotary Positional Encodings useful?

arXiv.org Artificial Intelligence

Positional Encodings (PEs) are a critical component of Transformer-based Large Language Models (LLMs), providing the attention mechanism with important sequence-position information. One of the most popular types of encoding used today in LLMs are Rotary Positional Encodings (RoPE), that rotate the queries and keys based on their relative distance. A common belief is that RoPE is useful because it helps to decay token dependency as relative distance increases. In this work, we argue that this is unlikely to be the core reason. We study the internals of a trained Gemma 7B model to understand how RoPE is being used at a mechanical level. We find that Gemma learns to use RoPE to construct robust'positional' attention patterns by exploiting the highest frequencies. We also find that, in general, Gemma greatly prefers to use the lowest frequencies of RoPE, which we suspect are used to carry semantic information. We mathematically prove interesting behaviours of RoPE and conduct experiments to verify our findings, proposing a modification of RoPE that fixes some highlighted issues and improves performance. We believe that this work represents an interesting step in better understanding PEs in LLMs, which we believe holds crucial value for scaling LLMs to large sizes and context lengths. It is common to provide positional information to the attention mechanism in Transformers through the use of absolute positional encodings (Vaswani et al., 2017), relative positional encodings (Su et al., 2024), or by introducing a bias directly to the activations (Press et al., 2021). One of the currently most widely adopted encodings, especially in Large Language Models (LLMs), are Rotary Positional Encodings (RoPE) (Su et al., 2024), being used in popular models such as LLama 3 (Dubey et al., 2024) and Gemma (Gemma Team et al., 2024). The method can be implemented efficiently and provides an interesting geometric approach to positional encodings. Despite the significant adoption of RoPE, the specific reasons why this method is useful to Transformer models remains poorly understood. One of the main arguments in favour of RoPE made by Su et al. (2024) is that the method helps to decay attention coefficients as the relative distance grows. Most such claims, however, rely on the queries and keys being constant vectors - which is uncommon in practice. In fact, in this work we find that there are many situations in which this decay does not occur and that this is exploited at times by attention heads in Gemma 7B (Gemma Team et al., 2024).


softmax is not enough (for sharp out-of-distribution)

arXiv.org Artificial Intelligence

A key property of reasoning systems is the ability to make sharp decisions on their input data. For contemporary AI systems, a key carrier of sharp behaviour is the softmax function, with its capability to perform differentiable query-key lookups. It is a common belief that the predictive power of networks leveraging softmax arises from "circuits" which sharply perform certain kinds of computations consistently across many diverse inputs. However, for these circuits to be robust, they would need to generalise well to arbitrary valid inputs. In this paper, we dispel this myth: even for tasks as simple as finding the maximum key, any learned circuitry must disperse as the number of items grows at test time. We attribute this to a fundamental limitation of the softmax function to robustly approximate sharp functions, prove this phenomenon theoretically, and propose adaptive temperature as an ad-hoc technique for improving the sharpness of softmax at inference time.


Transformers need glasses! Information over-squashing in language tasks

arXiv.org Artificial Intelligence

We study how information propagates in decoder-only Transformers, which are the architectural backbone of most existing frontier large language models (LLMs). We rely on a theoretical signal propagation analysis -- specifically, we analyse the representations of the last token in the final layer of the Transformer, as this is the representation used for next-token prediction. Our analysis reveals a representational collapse phenomenon: we prove that certain distinct sequences of inputs to the Transformer can yield arbitrarily close representations in the final token. This effect is exacerbated by the low-precision floating-point formats frequently used in modern LLMs. As a result, the model is provably unable to respond to these sequences in different ways -- leading to errors in, e.g., tasks involving counting or copying. Further, we show that decoder-only Transformer language models can lose sensitivity to specific tokens in the input, which relates to the well-known phenomenon of over-squashing in graph neural networks. We provide empirical evidence supporting our claims on contemporary LLMs. Our theory also points to simple solutions towards ameliorating these issues.


Bundle Neural Networks for message diffusion on graphs

arXiv.org Artificial Intelligence

The dominant paradigm for learning on graph-structured data is message passing. Despite being a strong inductive bias, the local message passing mechanism suffers from pathological issues such as over-smoothing, over-squashing, and limited node-level expressivity. To address these limitations we propose Bundle Neural Networks (BuNN), a new type of GNN that operates via message diffusion over flat vector bundles - structures analogous to connections on Riemannian manifolds that augment the graph by assigning to each node a vector space and an orthogonal map. A BuNN layer evolves the features according to a diffusion-type partial differential equation. When discretized, BuNNs are a special case of Sheaf Neural Networks (SNNs), a recently proposed MPNN capable of mitigating over-smoothing. The continuous nature of message diffusion enables BuNNs to operate on larger scales of the graph and, therefore, to mitigate over-squashing. Finally, we prove that BuNN can approximate any feature transformation over nodes on any (potentially infinite) family of graphs given injective positional encodings, resulting in universal node-level expressivity. We support our theory via synthetic experiments and showcase the strong empirical performance of BuNNs over a range of real-world tasks, achieving state-of-the-art results on several standard benchmarks in transductive and inductive settings.


Locality-Aware Graph-Rewiring in GNNs

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) are popular models for machine learning on graphs that typically follow the message-passing paradigm, whereby the feature of a node is updated recursively upon aggregating information over its neighbors. While exchanging messages over the input graph endows GNNs with a strong inductive bias, it can also make GNNs susceptible to over-squashing, thereby preventing them from capturing long-range interactions in the given graph. To rectify this issue, graph rewiring techniques have been proposed as a means of improving information flow by altering the graph connectivity. In this work, we identify three desiderata for graph-rewiring: (i) reduce over-squashing, (ii) respect the locality of the graph, and (iii) preserve the sparsity of the graph. We highlight fundamental trade-offs that occur between spatial and spectral rewiring techniques; while the former often satisfy (i) and (ii) but not (iii), the latter generally satisfy (i) and (iii) at the expense of (ii). We propose a novel rewiring framework that satisfies all of (i)--(iii) through a locality-aware sequence of rewiring operations. We then discuss a specific instance of such rewiring framework and validate its effectiveness on several real-world benchmarks, showing that it either matches or significantly outperforms existing rewiring approaches.


Latent Graph Inference using Product Manifolds

arXiv.org Artificial Intelligence

Graph Neural Networks usually rely on the assumption that the graph topology is available to the network as well as optimal for the downstream task. Latent graph inference allows models to dynamically learn the intrinsic graph structure of problems where the connectivity patterns of data may not be directly accessible. In this work, we generalize the discrete Differentiable Graph Module (dDGM) for latent graph learning. The original dDGM architecture used the Euclidean plane to encode latent features based on which the latent graphs were generated. By incorporating Riemannian geometry into the model and generating more complex embedding spaces, we can improve the performance of the latent graph inference system. In particular, we propose a computationally tractable approach to produce product manifolds of constant curvature model spaces that can encode latent features of varying structure. The latent representations mapped onto the inferred product manifold are used to compute richer similarity measures that are leveraged by the latent graph learning model to obtain optimized latent graphs. Moreover, the curvature of the product manifold is learned during training alongside the rest of the network parameters and based on the downstream task, rather than it being a static embedding space. Our novel approach is tested on a wide range of datasets, and outperforms the original dDGM model.


On Over-Squashing in Message Passing Neural Networks: The Impact of Width, Depth, and Topology

arXiv.org Artificial Intelligence

Message Passing Neural Networks (MPNNs) are instances of Graph Neural Networks that leverage the graph to send messages over the edges. This inductive bias leads to a phenomenon known as over-squashing, where a node feature is insensitive to information contained at distant nodes. Despite recent methods introduced to mitigate this issue, an understanding of the causes for over-squashing and of possible solutions are lacking. In this theoretical work, we prove that: (i) Neural network width can mitigate over-squashing, but at the cost of making the whole network more sensitive; (ii) Conversely, depth cannot help mitigate over-squashing: increasing the number of layers leads to over-squashing being dominated by vanishing gradients; (iii) The graph topology plays the greatest role, since over-squashing occurs between nodes at high commute (access) time. Our analysis provides a unified framework to study different recent methods introduced to cope with over-squashing and serves as a justification for a class of methods that fall under graph rewiring.