An Application of Tree-Structured Expectation Propagation for Channel Decoding
Olmos, Pablo M., Salamanca, Luis, Fuentes, Juan, Pérez-Cruz, Fernando
–Neural Information Processing Systems
We show an application of a tree structure for approximate inference in graphical models using the expectation propagation algorithm. These approximations are typically used over graphs with short-range cycles. We demonstrate that these approximations also help in sparse graphs with long-range loops, as the ones used in coding theory to approach channel capacity. For asymptotically large sparse graph, the expectation propagation algorithm together with the tree structure yields a completely disconnected approximation to the graphical model but, for for finite-length practical sparse graphs, the tree structure approximation to the code graph provides accurate estimates for the marginal of each variable. Furthermore, we propose a new method for constructing the tree structure on the fly that might be more amenable for sparse graphs with general factors.
Neural Information Processing Systems
Dec-31-2011