Legendre Decomposition for Tensors

Sugiyama, Mahito, Nakahara, Hiroyuki, Tsuda, Koji

Neural Information Processing Systems 

We present a novel nonnegative tensor decomposition method, called Legendre decomposition, which factorizes an input tensor into a multiplicative combination of parameters. Thanks to the well-developed theory of information geometry, the reconstructed tensor is unique and always minimizes the KL divergence from an input tensor. We empirically show that Legendre decomposition can more accurately reconstruct tensors than other nonnegative tensor decomposition methods.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found