A Bio-inspired Redundant Sensing Architecture

Anh Tuan Nguyen, Jian Xu, Zhi Yang

Neural Information Processing Systems 

Sensing is the process of deriving signals from the environment that allows artificial systems to interact with the physical world. The Shannon theorem specifies the maximum rate at which information can be acquired [1]. However, this upper bound is hard to achieve in many man-made systems. The biological visual systems, on the other hand, have highly efficient signal representation and processing mechanisms that allow precise sensing. In this work, we argue that redundancy is one of the critical characteristics for such superior performance.