Applied Cognitive Models of Frequency-based Decision Making

Staszewski, Jim (Carnegie Mellon University)

AAAI Conferences 

In this paper, we present a cognitive model of frequency-based decision-making applied to the task of landmine detection. The model is implemented in the ACT-R cognitive architecture and is strongly constrained by the cognitive primitives of the architecture. We then generalize the model to another task in the domain of macroeconomic decision-making using the same architecture, pursuing theoretical parsimony. We describe each model's representation requirements, assess their fits to the data, and analyze their performance scaling as a function of task and architectural parameters. Efforts to generalize the landmine detection model to macroeconomic decision making showed that reasonable fits to the macro-economic performance data could be achieved by models based either on procedural knowledge or declarative knowledge. This finding underscores the importance of distinguishing between processing strategies employed to execute tasks. Such detail appears needed to understand the neural foundations of frequency-based decision-making.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found