Maximal Sparsity with Deep Networks?
Bo Xin, Yizhou Wang, Wen Gao, David Wipf, Baoyuan Wang
–Neural Information Processing Systems
The iterations of many sparse estimation algorithms are comprised of a fixed linear filter cascaded with a thresholding nonlinearity, which collectively resemble a typical neural network layer. Consequently, a lengthy sequence of algorithm iterations can be viewed as a deep network with shared, hand-crafted layer weights. It is therefore quite natural to examine the degree to which a learned network model might act as a viable surrogate for traditional sparse estimation in domains where ample training data is available. While the possibility of a reduced computational budget is readily apparent when a ceiling is imposed on the number of layers, our work primarily focuses on estimation accuracy. In particular, it is well-known that when a signal dictionary has coherent columns, as quantified by a large RIP constant, then most tractable iterative algorithms are unable to find maximally sparse representations.
Neural Information Processing Systems
Jan-20-2025, 05:58:51 GMT
- Technology: