Goto

Collaborating Authors

 Wen Gao


Deep Alternative Neural Network: Exploring Contexts as Early as Possible for Action Recognition

Neural Information Processing Systems

Contexts are crucial for action recognition in video. Current methods often mine contexts after extracting hierarchical local features and focus on their high-order encodings. This paper instead explores contexts as early as possible and leverages their evolutions for action recognition. In particular, we introduce a novel architecture called deep alternative neural network (DANN) stacking alternative layers. Each alternative layer consists of a volumetric convolutional layer followed by a recurrent layer.


Maximal Sparsity with Deep Networks?

Neural Information Processing Systems

The iterations of many sparse estimation algorithms are comprised of a fixed linear filter cascaded with a thresholding nonlinearity, which collectively resemble a typical neural network layer. Consequently, a lengthy sequence of algorithm iterations can be viewed as a deep network with shared, hand-crafted layer weights. It is therefore quite natural to examine the degree to which a learned network model might act as a viable surrogate for traditional sparse estimation in domains where ample training data is available. While the possibility of a reduced computational budget is readily apparent when a ceiling is imposed on the number of layers, our work primarily focuses on estimation accuracy. In particular, it is well-known that when a signal dictionary has coherent columns, as quantified by a large RIP constant, then most tractable iterative algorithms are unable to find maximally sparse representations.