Hierarchical Methods for a Unified Approach to Discourse, Domain, and Style in Neural Conversational Models

Sedoc, João (University of Pennsylvania)

AAAI Conferences 

With the advent of personal assistants such as Siri and Alexa, there has been a renewed focus on dialog systems, specifically open domain conversational agents. Dialog is a challenging problem since it spans multiple conversational turns. To further complicate the problem, there are many contextual cues and valid possible utterances. Dialog is fundamentally a multiscale process given that context is carried from previous utterances in the conversation; however, current neural methods lack the ability to carry human-like conversation. Neural dialog models are based on recurrent neural network Encoder-Decoder sequence-to-sequence models (Sutskever, Vinyals, and Le, 2014; Bahdanau, Cho, and Bengio, 2015). However, these models lack the ability to create temporal and stylistic coherence in conversations. We propose to incorporate dialog acts (such as Statement-non-opinion ["Me, I'm in the legal department."], Acknowledge ["Uh-huh."]) and discourse connectives (e.g. "because," "then"), utterance clustering and domain prediction, and style shifting using hierarchical methods. In particular, we show that clustering of utterance representations automatically allows for a unified hierarchical approach to discourse, domain, and style.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found