Goto

Collaborating Authors

 Sedoc, João


Reasoning and the Trusting Behavior of DeepSeek and GPT: An Experiment Revealing Hidden Fault Lines in Large Language Models

arXiv.org Artificial Intelligence

When encountering increasingly frequent performance improvements or cost reductions from a new large language model (LLM), developers of applications leveraging LLMs must decide whether to take advantage of these improvements or stay with older tried-and-tested models. Low perceived switching frictions can lead to choices that do not consider more subtle behavior changes that the transition may induce. Our experiments use a popular game-theoretic behavioral economics model of trust to show stark differences in the trusting behavior of OpenAI's and DeepSeek's models. We highlight a collapse in the economic trust behavior of the o1-mini and o3-mini models as they reconcile profit-maximizing and risk-seeking with future returns from trust, and contrast it with DeepSeek's more sophisticated and profitable trusting behavior that stems from an ability to incorporate deeper concepts like forward planning and theory-of-mind. As LLMs form the basis for high-stakes commercial systems, our results highlight the perils of relying on LLM performance benchmarks that are too narrowly defined and suggest that careful analysis of their hidden fault lines should be part of any organization's AI strategy.


From Human Annotation to LLMs: SILICON Annotation Workflow for Management Research

arXiv.org Artificial Intelligence

Unstructured text data annotation and analysis are fundamental to management research, often relying on human annotators through crowdsourcing platforms. While Large Language Models (LLMs) promise to provide a cost-effective and efficient alternative to human annotation, there lacks a systematic workflow that evaluate when LLMs are suitable or how to proceed with LLM-based text annotation in a reproducible manner. This paper addresses this methodological gap by introducing the ``SILICON" (\textbf{S}ystematic \textbf{I}nference with \textbf{L}LMs for \textbf{I}nformation \textbf{C}lassificati\textbf{o}n and \textbf{N}otation) workflow. The workflow integrates established principles of human annotation with systematic prompt optimization and model selection, addressing challenges such as developing robust annotation guidelines, establishing high-quality human baselines, optimizing prompts, and ensuring reproducibility across LLMs. We validate the SILICON workflow through seven case studies covering common management research tasks, including business proposal evaluation, dialog intent and breakdown analysis, review attribute detection. Our findings highlight the importance of validating annotation guideline agreement, the superiority of expert-developed human baselines over crowdsourced ones, the iterative nature of prompt optimization, and the necessity of testing multiple LLMs. Notably, we propose a regression-based methodology to empirically compare LLM outputs across prompts and models. Our workflow advances management research by establishing reproducible processes for LLM-based annotation that maintain scientific rigor. We provide practical guidance for researchers to effectively navigate the evolving landscape of generative AI tools effectively while maintaining transparency and reproducibility.


The Illusion of Empathy: How AI Chatbots Shape Conversation Perception

arXiv.org Artificial Intelligence

As AI chatbots become more human-like by incorporating empathy, understanding user-centered perceptions of chatbot empathy and its impact on conversation quality remains essential yet under-explored. This study examines how chatbot identity and perceived empathy influence users' overall conversation experience. Analyzing 155 conversations from two datasets, we found that while GPT-based chatbots were rated significantly higher in conversational quality, they were consistently perceived as less empathetic than human conversational partners. Empathy ratings from GPT-4o annotations aligned with users' ratings, reinforcing the perception of lower empathy in chatbots. In contrast, 3 out of 5 empathy models trained on human-human conversations detected no significant differences in empathy language between chatbots and humans. Our findings underscore the critical role of perceived empathy in shaping conversation quality, revealing that achieving high-quality human-AI interactions requires more than simply embedding empathetic language; it necessitates addressing the nuanced ways users interpret and experience empathy in conversations with chatbots.


Explicit and Implicit Large Language Model Personas Generate Opinions but Fail to Replicate Deeper Perceptions and Biases

arXiv.org Artificial Intelligence

Large language models (LLMs) are increasingly being used in human-centered social scientific tasks, such as data annotation, synthetic data creation, and engaging in dialog. However, these tasks are highly subjective and dependent on human factors, such as one's environment, attitudes, beliefs, and lived experiences. Thus, employing LLMs (which do not have such human factors) in these tasks may result in a lack of variation in data, failing to reflect the diversity of human experiences. In this paper, we examine the role of prompting LLMs with human-like personas and asking the models to answer as if they were a specific human. This is done explicitly, with exact demographics, political beliefs, and lived experiences, or implicitly via names prevalent in specific populations. The LLM personas are then evaluated via (1) subjective annotation task (e.g., detecting toxicity) and (2) a belief generation task, where both tasks are known to vary across human factors. We examine the impact of explicit vs. implicit personas and investigate which human factors LLMs recognize and respond to. Results show that LLM personas show mixed results when reproducing known human biases, but generate generally fail to demonstrate implicit biases. We conclude that LLMs lack the intrinsic cognitive mechanisms of human thought, while capturing the statistical patterns of how people speak, which may restrict their effectiveness in complex social science applications.


Large Language Models Show Human-like Social Desirability Biases in Survey Responses

arXiv.org Artificial Intelligence

As Large Language Models (LLMs) become widely used to model and simulate human behavior, understanding their biases becomes critical. We developed an experimental framework using Big Five personality surveys and uncovered a previously undetected social desirability bias in a wide range of LLMs. By systematically varying the number of questions LLMs were exposed to, we demonstrate their ability to infer when they are being evaluated. When personality evaluation is inferred, LLMs skew their scores towards the desirable ends of trait dimensions (i.e., increased extraversion, decreased neuroticism, etc). This bias exists in all tested models, including GPT-4/3.5, Claude 3, Llama 3, and PaLM-2. Bias levels appear to increase in more recent models, with GPT-4's survey responses changing by 1.20 (human) standard deviations and Llama 3's by 0.98 standard deviations-very large effects. This bias is robust to randomization of question order and paraphrasing. Reverse-coding all the questions decreases bias levels but does not eliminate them, suggesting that this effect cannot be attributed to acquiescence bias. Our findings reveal an emergent social desirability bias and suggest constraints on profiling LLMs with psychometric tests and on using LLMs as proxies for human participants.


On the Role of Summary Content Units in Text Summarization Evaluation

arXiv.org Artificial Intelligence

At the heart of the Pyramid evaluation method for text summarization lie human written summary content units (SCUs). These SCUs are concise sentences that decompose a summary into small facts. Such SCUs can be used to judge the quality of a candidate summary, possibly partially automated via natural language inference (NLI) systems. Interestingly, with the aim to fully automate the Pyramid evaluation, Zhang and Bansal (2021) show that SCUs can be approximated by automatically generated semantic role triplets (STUs). However, several questions currently lack answers, in particular: i) Are there other ways of approximating SCUs that can offer advantages? ii) Under which conditions are SCUs (or their approximations) offering the most value? In this work, we examine two novel strategies to approximate SCUs: generating SCU approximations from AMR meaning representations (SMUs) and from large language models (SGUs), respectively. We find that while STUs and SMUs are competitive, the best approximation quality is achieved by SGUs. We also show through a simple sentence-decomposition baseline (SSUs) that SCUs (and their approximations) offer the most value when ranking short summaries, but may not help as much when ranking systems or longer summaries.


Large Human Language Models: A Need and the Challenges

arXiv.org Artificial Intelligence

As research in human-centered NLP advances, there is a growing recognition of the importance of incorporating human and social factors into NLP models. At the same time, our NLP systems have become heavily reliant on LLMs, most of which do not model authors. To build NLP systems that can truly understand human language, we must better integrate human contexts into LLMs. This brings to the fore a range of design considerations and challenges in terms of what human aspects to capture, how to represent them, and what modeling strategies to pursue. To address these, we advocate for three positions toward creating large human language models (LHLMs) using concepts from psychological and behavioral sciences: First, LM training should include the human context. Second, LHLMs should recognize that people are more than their group(s). Third, LHLMs should be able to account for the dynamic and temporally-dependent nature of the human context. We refer to relevant advances and present open challenges that need to be addressed and their possible solutions in realizing these goals.


Conceptor-Aided Debiasing of Large Language Models

arXiv.org Artificial Intelligence

Pre-trained large language models (LLMs) reflect the inherent social biases of their training corpus. Many methods have been proposed to mitigate this issue, but they often fail to debias or they sacrifice model accuracy. We use conceptors--a soft projection method--to identify and remove the bias subspace in LLMs such as BERT and GPT. We propose two methods of applying conceptors (1) bias subspace projection by post-processing by the conceptor NOT operation; and (2) a new architecture, conceptor-intervened BERT (CI-BERT), which explicitly incorporates the conceptor projection into all layers during training. We find that conceptor post-processing achieves state-of-the-art (SoTA) debiasing results while maintaining LLMs' performance on the GLUE benchmark. Further, it is robust in various scenarios and can mitigate intersectional bias efficiently by its AND operation on the existing bias subspaces. Although CI-BERT's training takes all layers' bias into account and can beat its post-processing counterpart in bias mitigation, CI-BERT reduces the language model accuracy. We also show the importance of carefully constructing the bias subspace. The best results are obtained by removing outliers from the list of biased words, combining them (via the OR operation), and computing their embeddings using the sentences from a cleaner corpus.


An Integrative Survey on Mental Health Conversational Agents to Bridge Computer Science and Medical Perspectives

arXiv.org Artificial Intelligence

Mental health conversational agents (a.k.a. chatbots) are widely studied for their potential to offer accessible support to those experiencing mental health challenges. Previous surveys on the topic primarily consider papers published in either computer science or medicine, leading to a divide in understanding and hindering the sharing of beneficial knowledge between both domains. To bridge this gap, we conduct a comprehensive literature review using the PRISMA framework, reviewing 534 papers published in both computer science and medicine. Our systematic review reveals 136 key papers on building mental health-related conversational agents with diverse characteristics of modeling and experimental design techniques. We find that computer science papers focus on LLM techniques and evaluating response quality using automated metrics with little attention to the application while medical papers use rule-based conversational agents and outcome metrics to measure the health outcomes of participants. Based on our findings on transparency, ethics, and cultural heterogeneity in this review, we provide a few recommendations to help bridge the disciplinary divide and enable the cross-disciplinary development of mental health conversational agents.


Needle in a Haystack: An Analysis of High-Agreement Workers on MTurk for Summarization

arXiv.org Artificial Intelligence

To prevent the costly and inefficient use of resources on low-quality annotations, we want a method for creating a pool of dependable annotators who can effectively complete difficult tasks, such as evaluating automatic summarization. Thus, we investigate the recruitment of high-quality Amazon Mechanical Turk workers via a two-step pipeline. We show that we can successfully filter out subpar workers before they carry out the evaluations and obtain high-agreement annotations with similar constraints on resources. Although our workers demonstrate a strong consensus among themselves and CloudResearch workers, their alignment with expert judgments on a subset of the data is not as expected and needs further training in correctness. This paper still serves as a best practice for the recruitment of qualified annotators in other challenging annotation tasks.