Goto

Collaborating Authors

 University of Pennsylvania


Reports of the Workshops of the 32nd AAAI Conference on Artificial Intelligence

AI Magazine

The AAAI-18 workshop program included 15 workshops covering a wide range of topics in AI. Workshops were held Sunday and Monday, February 2–7, 2018, at the Hilton New Orleans Riverside in New Orleans, Louisiana, USA. This report contains summaries of the Affective Content Analysis workshop; the Artificial Intelligence Applied to Assistive Technologies and Smart Environments; the AI and Marketing Science workshop; the Artificial Intelligence for Cyber Security workshop; the AI for Imperfect-Information Games; the Declarative Learning Based Programming workshop; the Engineering Dependable and Secure Machine Learning Systems workshop; the Health Intelligence workshop; the Knowledge Extraction from Games workshop; the Plan, Activity, and Intent Recognition workshop; the Planning and Inference workshop; the Preference Handling workshop; the Reasoning and Learning for Human-Machine Dialogues workshop; and the the AI Enhanced Internet of Things Data Processing for Intelligent Applications workshop.


A Recap of the AAAI and IAAI 2018 Conferences and the EAAI Symposium

AI Magazine

The 2018 AAAI Conference on Artificial Intelligence, the 2018 Innovative Applications of Artificial Intelligence, and the 2018 Symposium on Educational Advances in Artificial Intelligence were held February 2–7, 2018 at the Hilton New Orleans Riverside, New Orleans, Louisiana, USA.  This report, based on the prefaces contained in the AAAI-18 proceedings and program, summarizes the events of the conference.


Editorial for the AAAI-18 Workshop on Affective Content Analysis

AAAI Conferences

The first AAAI-18 Workshop on Affective Content Analysis was an interdisciplinary platform that focused on the analysis of emotions, sentiments, and attitudes in textual, visual, and multimodal content for applications in psychology, consumer behavior, language understanding, and computer vision. The program comprised interdisciplinary keynotes, original research presentations, a poster session and short pitches for datasets and pre-published work.


Bayesian Q-learning with Assumed Density Filtering

AAAI Conferences

While off-policy temporal difference methods have been broadly used in reinforcement learning due to their efficiency and simple implementation, their Bayesian counterparts have been relatively understudied. This is mainly because the max operator in the Bellman optimality equation brings non-linearity and inconsistent distributions over value function. In this paper, we introduce a new Bayesian approach to off-policy TD methods using Assumed Density Filtering, called ADFQ, which updates beliefs on action-values (Q) through an online Bayesian inference method. Uncertainty measures in the beliefs not only are used in exploration but they provide a natural regularization in the belief updates. We also present a connection between ADFQ and Q-learning. Our empirical results show the proposed ADFQ algorithms outperform comparing algorithms in several task domains. Moreover, our algorithms improve general drawbacks in BRL such as efficiency, usage of uncertainty, and nonlinearity.


Question Answering as Global Reasoning Over Semantic Abstractions

AAAI Conferences

We propose a novel method for exploiting the semantic structure of text to answer multiple-choice questions. The approach is especially suitable for domains that require reasoning over a diverse set of linguistic constructs but have limited training data. To address these challenges, we present the first system, to the best of our knowledge, that reasons over a wide range of semantic abstractions of the text, which are derived using off-the-shelf, general-purpose, pre-trained natural language modules such as semantic role labelers, coreference resolvers, and dependency parsers. Representing multiple abstractions as a family of graphs, we translate question answering (QA) into a search for an optimal subgraph that satisfies certain global and local properties. This formulation generalizes several prior structured QA systems. Our system, SEMANTICILP, demonstrates strong performance on two domains simultaneously. In particular, on a collection of challenging science QA datasets, it outperforms various state-of-the-art approaches, including neural models, broad coverage information retrieval, and specialized techniques using structured knowledge bases, by 2%-6%.


Comparing Reward Shaping, Visual Hints, and Curriculum Learning

AAAI Conferences

Common approaches to learn complex tasks in reinforcement learning include reward shaping, environmental hints, or a curriculum. Yet few studies examine how they compare to each other, when one might prefer one approach, or how they may complement each other. As a first step in this direction, we compare reward shaping, hints, and curricula for a Deep RL agent in the game of Minecraft. We seek to answer whether reward shaping, visual hints, or the curricula have the most impact on performance, which we measure as the time to reach the target, the distance from the target, the cumulative reward, or the number of actions taken. Our analyses show that performance is most impacted by the curriculum used and visual hints; shaping had less impact. For similar navigation tasks, the results suggest that designing an effective curriculum and providing appropriate hints most improve the performance. Common approaches to learn complex tasks in reinforcement learning include reward shaping, environmental hints, or a curriculum, yet few studies examine how they compare to each other. We compare these approaches for a Deep RL agent in the game of Minecraft and show performance is most impacted by the curriculum used and visual hints; shaping had less impact. For similar navigation tasks, this suggests that designing an effective curriculum with hints most improve the performance.


Parameter-Free Centralized Multi-Task Learning for Characterizing Developmental Sex Differences in Resting State Functional Connectivity

AAAI Conferences

In contrast to most existing studies that typically characterize the developmental sex differences using analysis of variance or equivalently multiple linear regression, we present a parameter-free centralized multi-task learning method to identify sex specific and common resting state functional connectivity (RSFC) patterns underlying the brain development based on resting state functional MRI (rs-fMRI) data. Specifically, we design a novel multi-task learning model to characterize sex specific and common RSFC patterns in an age prediction framework by regarding the age prediction for males and females as separate tasks. Moreover, the importance of each task and the balance of these two patterns, respectively, are automatically learned in order to make the multi-task learning robust as well as free of tunable parameters, i.e., parameter-free for short. Our experimental results on synthetic datasets verified the effectiveness of our method with respect to prediction performance, and experimental results on rs-fMRI scans of 1041 subjects (651 males) of the Philadelphia Neurodevelopmental Cohort (PNC) showed that our method could improve the age prediction on average by 5.82% with statistical significance than the best alternative methods under comparison, in addition to characterizing the developmental sex differences in RSFC patterns.


Rank Maximal Equal Contribution: A Probabilistic Social Choice Function

AAAI Conferences

When aggregating preferences of agents via voting, two desirable goals are to incentivize agents to participate in the voting process and then identify outcomes that are Pareto efficient. We consider participation as formalized by Brandl, Brandt, and Hofbauer (2015) based on the stochastic dominance (SD) relation. We formulate a new rule called RMEC (Rank Maximal Equal Contribution) that is polynomial-time computable, ex post efficient and satisfies the strongest notion of participation. It also satisfies many other desirable fairness properties. The rule suggests a general approach to achieving very strong participation, ex post efficiency and fairness.


Hierarchical Methods for a Unified Approach to Discourse, Domain, and Style in Neural Conversational Models

AAAI Conferences

With the advent of personal assistants such as Siri and Alexa, there has been a renewed focus on dialog systems, specifically open domain conversational agents. Dialog is a challenging problem since it spans multiple conversational turns. To further complicate the problem, there are many contextual cues and valid possible utterances. Dialog is fundamentally a multiscale process given that context is carried from previous utterances in the conversation; however, current neural methods lack the ability to carry human-like conversation. Neural dialog models are based on recurrent neural network Encoder-Decoder sequence-to-sequence models (Sutskever, Vinyals, and Le, 2014; Bahdanau, Cho, and Bengio, 2015). However, these models lack the ability to create temporal and stylistic coherence in conversations. We propose to incorporate dialog acts (such as Statement-non-opinion ["Me, I'm in the legal department."], Acknowledge ["Uh-huh."]) and discourse connectives (e.g. "because," "then"), utterance clustering and domain prediction, and style shifting using hierarchical methods. In particular, we show that clustering of utterance representations automatically allows for a unified hierarchical approach to discourse, domain, and style.


Learning Better Name Translation for Cross-Lingual Wikification

AAAI Conferences

A notable challenge in cross-lingual wikification is the problem of retrieving English Wikipedia title candidates given a non-English mention, a step that requires translating names written in a foreign language into English. Creating training data for name translation requires significant amount of human efforts. In order to cover as many languages as possible, we propose a probabilistic model that leverages indirect supervision signals in a knowledge base. More specifically, the model learns name translation from title pairs obtained from the inter-language links in Wikipedia. The model jointly considers word alignment and word transliteration. Comparing to 6 other approaches on 9 languages, we show that the proposed model outperforms others not only on the transliteration metric, but also on the ability to generate target English titles for a cross-lingual wikifier. Consequently, as we show, it improves the end-to-end performance of a cross-lingual wikifier on the TAC 2016 EDL dataset.