Personalized Steering of Large Language Models: Versatile Steering Vectors Through Bi-directional Preference Optimization

Neural Information Processing Systems 

Researchers have been studying approaches to steer the behavior of Large Language Models (LLMs) and build personalized LLMs tailored for various applications. While fine-tuning seems to be a direct solution, it requires substantial computational resources and may significantly affect the utility of the original LLM. Recent endeavors have introduced more lightweight strategies, focusing on extracting "steering vectors" to guide the model's output toward desired behaviors by adjusting activations within specific layers of the LLM's transformer architecture. However, such steering vectors are directly extracted from the activations of human preference data and thus often lead to suboptimal results and occasional failures, especially in alignment-related scenarios. In this work, we propose an innovative approach that could produce more effective steering vectors through bi-directional preference optimization. Our method is designed to allow steering vectors to directly influence the generation probability of contrastive human preference data pairs, thereby offering a more precise representation of the target behavior.