Decision-Theoretic Control of Crowd-Sourced Workflows
Dai, Peng (University of Washington) | Mausam, ' (University of Washington) | (University of Washington) | Weld, Daniel Sabey
Crowd-sourcing is a recent framework in which human intelligence tasks are outsourced to a crowd of unknown people ("workers") as an open call (e.g., on Amazon's Mechanical Turk). Crowd-sourcing has become immensely popular with hoards of employers ("requesters"), who use it to solve a wide variety of jobs, such as dictation transcription, content screening, etc. In order to achieve quality results, requesters often subdivide a large task into a chain of bite-sized subtasks that are combined into a complex, iterative workflow in which workers check and improve each other's results. This paper raises an exciting question for AI — could an autonomous agent control these workflows without human intervention, yielding better results than today's state of the art, a fixed control program? We describe a planner, TurKontrol, that formulates workflow control as a decision-theoretic optimization problem, trading off the implicit quality of a solution artifact against the cost for workers to achieve it. We lay the mathematical framework to govern the various decisions at each point in a popular class of workflows. Based on our analysis we implement the workflow control algorithm and present experiments demonstrating that TurKontrol obtains much higher utilities than popular fixed policies.
Jul-15-2010
- Country:
- North America > United States > Washington > King County > Seattle (0.14)
- Genre:
- Workflow (1.00)
- Technology: