Mausam, '
Decision-Theoretic Control of Crowd-Sourced Workflows
Dai, Peng (University of Washington) | Mausam, ' (University of Washington) | (University of Washington) | Weld, Daniel Sabey
Crowd-sourcing is a recent framework in which human intelligence tasks are outsourced to a crowd of unknown people ("workers") as an open call (e.g., on Amazon's Mechanical Turk). Crowd-sourcing has become immensely popular with hoards of employers ("requesters"), who use it to solve a wide variety of jobs, such as dictation transcription, content screening, etc. In order to achieve quality results, requesters often subdivide a large task into a chain of bite-sized subtasks that are combined into a complex, iterative workflow in which workers check and improve each other's results. This paper raises an exciting question for AI — could an autonomous agent control these workflows without human intervention, yielding better results than today's state of the art, a fixed control program? We describe a planner, TurKontrol, that formulates workflow control as a decision-theoretic optimization problem, trading off the implicit quality of a solution artifact against the cost for workers to achieve it. We lay the mathematical framework to govern the various decisions at each point in a popular class of workflows. Based on our analysis we implement the workflow control algorithm and present experiments demonstrating that TurKontrol obtains much higher utilities than popular fixed policies.
SixthSense: Fast and Reliable Recognition of Dead Ends in MDPs
Kolobov, Andrey (University of Washington, Seattle) | Mausam, ' (University of Washington, Seattle) | (University of Washington, Seattle) | Weld, Daniel
The results of the latest International Probabilistic Planning Competition (IPPC-2008) indicate that the presence of dead ends, states with no trajectory to the goal, makes MDPs hard for modern probabilistic planners. Implicit dead ends, states with executable actions but no path to the goal, are particularly challenging; existing MDP solvers spend much time and memory identifying these states. As a first attempt to address this issue, we propose a machine learning algorithm called SIXTHSENSE. SIXTHSENSE helps existing MDP solvers by finding nogoods, conjunctions of literals whose truth in a state implies that the state is a dead end. Importantly, our learned nogoods are sound, and hence the states they identify are true dead ends. SIXTHSENSE is very fast, needs little training data, and takes only a small fraction of total planning time. While IPPC problems may have millions of dead ends, they may typically be represented with only a dozen or two no-goods. Thus, nogood learning efficiently produces a quick and reliable means for dead-end recognition. Our experiments show that the nogoods found by SIXTHSENSE routinely reduce planning space and time on IPPC domains, enabling some planners to solve problems they could not previously handle.
Panlingual Lexical Translation via Probabilistic Inference
Mausam, ' (University of Washington) | (University of Washington) | Soderland, Stephen (University of Washington) | Etzioni, Oren
The bare minimum lexical resource required to translate between a pair of languages is a translation dictionary. Unfortunately, dictionaries exist only between a tiny fraction of the 49 million possible language-pairs making machine translation virtually impossible between most of the languages. This paper summarizes the last four years of our research motivated by the vision of panlingual communication. Our research comprises three key steps. First, we compile over 630 freely available dictionaries over the Web and convert this data into a single representation – the translation graph. Second, we build several inference algorithms that infer translations between word pairs even when no dictionary lists them as translations. Finally, we run our inference procedure offline to construct PANDICTIONARY– a sense-distinguished, massively multilingual dictionary that has translations in more than 1000 languages. Our experiments assess the quality of this dictionary and find that we have 4 times as many translations at a high precision of 0.9 compared to the English Wiktionary, which is the lexical resource closest to PANDICTIONARY.