In-Context Impersonation Reveals Large Language Models' Strengths and Biases
Leonard Salewski, Stephan Alaniz, Isabel Rio-Torto, Eric Schulz, Zeynep Akata
–Neural Information Processing Systems
In everyday conversations, humans can take on different roles and adapt their vocabulary to their chosen roles. We explore whether LLMs can take on, that is impersonate, different roles when they generate text in-context. We ask LLMs to assume different personas before solving vision and language tasks. We do this by prefixing the prompt with a persona that is associated either with a social identity or domain expertise. In a multi-armed bandit task, we find that LLMs pretending to be children of different ages recover human-like developmental stages of exploration. In a language-based reasoning task, we find that LLMs impersonating domain experts perform better than LLMs impersonating non-domain experts.
Neural Information Processing Systems
Feb-11-2025, 14:31:19 GMT
- Country:
- North America (0.28)
- Genre:
- Research Report > New Finding (1.00)
- Industry:
- Education (0.47)
- Technology: