Inducing Probabilistic Relational Rules from Probabilistic Examples
Raedt, Luc De (KU Leuven) | Dries, Anton (KU Leuven) | Thon, Ingo (KU Leuven) | Broeck, Guy Van den (KU Leuven) | Verbeke, Mathias (KU Leuven)
We study the problem of inducing logic programs in a probabilistic setting, in which both the example descriptions and their classification can be probabilistic. The setting is incorporated in the probabilistic rule learner ProbFOIL+, which combines principles of the rule learner FOIL with ProbLog, a probabilistic Prolog. We illustrate the approach by applying it to the knowledge base of NELL, the Never-Ending Language Learner.
Jul-15-2015