SMEM Algorithm for Mixture Models

Ueda, Naonori, Nakano, Ryohei, Ghahramani, Zoubin, Hinton, Geoffrey E.

Neural Information Processing Systems 

We present a split and merge EM (SMEM) algorithm to overcome the local maximum problem in parameter estimation of finite mixture models. In the case of mixture models, non-global maxima often involve having too many components of a mixture model in one part of the space and too few in another, widely separated part of the space. To escape from such configurations we repeatedly perform simultaneous split and merge operations using a new criterion for efficiently selecting the split and merge candidates. We apply the proposed algorithm to the training of Gaussian mixtures and mixtures of factor analyzers using synthetic and real data and show the effectiveness of using the split and merge operations to improve the likelihood of both the training data and of held-out test data. 1 INTRODUCTION Mixture density models, in particular normal mixtures, have been extensively used in the field of statistical pattern recognition [1]. Recently, more sophisticated mixture density models such as mixtures of latent variable models (e.g., probabilistic PCA or factor analysis) have been proposed to approximate the underlying data manifold [2]-[4].

Similar Docs  Excel Report  more

TitleSimilaritySource
None found