Goto

Collaborating Authors

Hinton, Geoffrey E.


Implicit Mixtures of Restricted Boltzmann Machines

Neural Information Processing Systems

We present a mixture model whose components are Restricted Boltzmann Machines (RBMs). This possibility has not been considered before because computing the partition function of an RBM is intractable, which appears to make learning a mixture of RBMs intractable as well. Surprisingly, when formulated as a third-order Boltzmann machine, such a mixture model can be learned tractably using contrastive divergence. The energy function of the model captures three-way interactions among visible units, hidden units, and a single hidden multinomial unit that represents the cluster labels. The distinguishing feature of this model is that, unlike other mixture models, the mixing proportions are not explicitly parameterized.


Stacked Capsule Autoencoders

Neural Information Processing Systems

Objects are composed of a set of geometrically organized parts. We introduce an unsupervised capsule autoencoder (SCAE), which explicitly uses geometric relationships between parts to reason about objects. Since these relationships do not depend on the viewpoint, our model is robust to viewpoint changes. SCAE consists of two stages. In the first stage, the model predicts presences and poses of part templates directly from the image and tries to reconstruct the image by appropriately arranging the templates.


Lookahead Optimizer: k steps forward, 1 step back

Neural Information Processing Systems

The vast majority of successful deep neural networks are trained using variants of stochastic gradient descent (SGD) algorithms. Recent attempts to improve SGD can be broadly categorized into two approaches: (1) adaptive learning rate schemes, such as AdaGrad and Adam and (2) accelerated schemes, such as heavy-ball and Nesterov momentum. In this paper, we propose a new optimization algorithm, Lookahead, that is orthogonal to these previous approaches and iteratively updates two sets of weights. Intuitively, the algorithm chooses a search direction by looking ahead at the sequence of fast weights" generated by another optimizer. We show that Lookahead improves the learning stability and lowers the variance of its inner optimizer with negligible computation and memory cost.


When does label smoothing help?

Neural Information Processing Systems

The generalization and learning speed of a multi-class neural network can often be significantly improved by using soft targets that are a weighted average of the hard targets and the uniform distribution over labels. Smoothing the labels in this way prevents the network from becoming over-confident and label smoothing has been used in many state-of-the-art models, including image classification, language translation and speech recognition. Despite its widespread use, label smoothing is still poorly understood. Here we show empirically that in addition to improving generalization, label smoothing improves model calibration which can significantly improve beam search. However, we also observe that if a teacher network is trained with label smoothing, knowledge distillation into a student network is much less effective.


Using Deep Belief Nets to Learn Covariance Kernels for Gaussian Processes

Neural Information Processing Systems

We show how to use unlabeled data and a deep belief net (DBN) to learn a good covariance kernel for a Gaussian process. We first learn a deep generative model of the unlabeled data using the fast, greedy algorithm introduced by Hinton et.al. If the data is high-dimensional and highly-structured, a Gaussian kernel applied to the top layer of features in the DBN works much better than a similar kernel applied to the raw input. Performance at both regression and classification can then be further improved by using backpropagation through the DBN to discriminatively fine-tune the covariance kernel. Papers published at the Neural Information Processing Systems Conference.


Modeling image patches with a directed hierarchy of Markov random fields

Neural Information Processing Systems

We describe an efficient learning procedure for multilayer generative models that combine the best aspects of Markov random fields and deep, directed belief nets. The generative models can be learned one layer at a time and when learning is complete they have a very fast inference procedure for computing a good approximation to the posterior distribution in all of the hidden layers. Each hidden layer has its own MRF whose energy function is modulated by the top-down directed connections from the layer above. To generate from the model, each layer in turn must settle to equilibrium given its top-down input. We show that this type of model is good at capturing the statistics of patches of natural images.


The Recurrent Temporal Restricted Boltzmann Machine

Neural Information Processing Systems

The Temporal Restricted Boltzmann Machine (TRBM) is a probabilistic model for sequences that is able to successfully model (i.e., generate nice-looking samples of) several very high dimensional sequences, such as motion capture data and the pixels of low resolution videos of balls bouncing in a box. The major disadvantage of the TRBM is that exact inference is extremely hard, since even computing a Gibbs update for a single variable of the posterior is exponentially expensive. This difficulty has necessitated the use of a heuristic inference procedure, that nonetheless was accurate enough for successful learning. In this paper we introduce the Recurrent TRBM, which is a very slight modification of the TRBM for which exact inference is very easy and exact gradient learning is almost tractable. We demonstrate that the RTRBM is better than an analogous TRBM at generating motion capture and videos of bouncing balls.


Using matrices to model symbolic relationship

Neural Information Processing Systems

We describe a way of learning matrix representations of objects and relationships. The goal of learning is to allow multiplication of matrices to represent symbolic relationships between objects and symbolic relationships between relationships, which is the main novelty of the method. We demonstrate that this leads to excellent generalization in two different domains: modular arithmetic and family relationships. We show that the same system can learn first-order propositions such as $(2, 5) \member \!3$ or $(Christopher, Penelope)\member has\_wife$, and higher-order propositions such as $(3, \!3) \member plus$ and $( \!3, -\!3) \member inverse$ or $(has\_husband, has\_wife)\in higher\_oppsex$. We further demonstrate that the system understands how higher-order propositions are related to first-order ones by showing that it can correctly answer questions about first-order propositions involving the relations $ \!3$ or $has\_wife$ even though it has not been trained on any first-order examples involving these relations.


Replicated Softmax: an Undirected Topic Model

Neural Information Processing Systems

We show how to model documents as bags of words using family of two-layer, undirected graphical models. Each member of the family has the same number of binary hidden units but a different number of softmax visible units. All of the softmax units in all of the models in the family share the same weights to the binary hidden units. We describe efficient inference and learning procedures for such a family. Each member of the family models the probability distribution of documents of a specific length as a product of topic-specific distributions rather than as a mixture and this gives much better generalization than Latent Dirichlet Allocation for modeling the log probabilities of held-out documents.


Generating more realistic images using gated MRF's

Neural Information Processing Systems

Probabilistic models of natural images are usually evaluated by measuring performance on rather indirect tasks, such as denoising and inpainting. A more direct way to evaluate a generative model is to draw samples from it and to check whether statistical properties of the samples match the statistics of natural images. This method is seldom used with high-resolution images, because current models produce samples that are very different from natural images, as assessed by even simple visual inspection. We investigate the reasons for this failure and we show that by augmenting existing models so that there are two sets of latent variables, one set modelling pixel intensities and the other set modelling image-specific pixel covariances, we are able to generate high-resolution images that look much more realistic than before. The overall model can be interpreted as a gated MRF where both pair-wise dependencies and mean intensities of pixels are modulated by the states of latent variables.