Goto

Collaborating Authors

 Communications: Instructional Materials


COT: A Generative Approach for Hate Speech Counter-Narratives via Contrastive Optimal Transport

arXiv.org Artificial Intelligence

Counter-narratives, which are direct responses consisting of non-aggressive fact-based arguments, have emerged as a highly effective approach to combat the proliferation of hate speech. Previous methodologies have primarily focused on fine-tuning and post-editing techniques to ensure the fluency of generated contents, while overlooking the critical aspects of individualization and relevance concerning the specific hatred targets, such as LGBT groups, immigrants, etc. This research paper introduces a novel framework based on contrastive optimal transport, which effectively addresses the challenges of maintaining target interaction and promoting diversification in generating counter-narratives. Firstly, an Optimal Transport Kernel (OTK) module is leveraged to incorporate hatred target information in the token representations, in which the comparison pairs are extracted between original and transported features. Secondly, a self-contrastive learning module is employed to address the issue of model degeneration. This module achieves this by generating an anisotropic distribution of token representations. Finally, a target-oriented search method is integrated as an improved decoding strategy to explicitly promote domain relevance and diversification in the inference process. This strategy modifies the model's confidence score by considering both token similarity and target relevance. Quantitative and qualitative experiments have been evaluated on two benchmark datasets, which demonstrate that our proposed model significantly outperforms current methods evaluated by metrics from multiple aspects.


Data Science Education in Undergraduate Physics: Lessons Learned from a Community of Practice

arXiv.org Artificial Intelligence

It is becoming increasingly important that physics educators equip their students with the skills to work with data effectively. However, many educators may lack the necessary training and expertise in data science to teach these skills. To address this gap, we created the Data Science Education Community of Practice (DSECOP), bringing together graduate students and physics educators from different institutions and backgrounds to share best practices and lessons learned from integrating data science into undergraduate physics education. In this article we present insights and experiences from this community of practice, highlighting key strategies and challenges in incorporating data science into the introductory physics curriculum. Our goal is to provide guidance and inspiration to educators who seek to integrate data science into their teaching, helping to prepare the next generation of physicists for a data-driven world.


Artificial Intelligence Index Report 2024

arXiv.org Artificial Intelligence

The 2024 Index is our most comprehensive to date and arrives at an important moment when AI's influence on society has never been more pronounced. This year, we have broadened our scope to more extensively cover essential trends such as technical advancements in AI, public perceptions of the technology, and the geopolitical dynamics surrounding its development. Featuring more original data than ever before, this edition introduces new estimates on AI training costs, detailed analyses of the responsible AI landscape, and an entirely new chapter dedicated to AI's impact on science and medicine. The AI Index report tracks, collates, distills, and visualizes data related to artificial intelligence (AI). Our mission is to provide unbiased, rigorously vetted, broadly sourced data in order for policymakers, researchers, executives, journalists, and the general public to develop a more thorough and nuanced understanding of the complex field of AI. The AI Index is recognized globally as one of the most credible and authoritative sources for data and insights on artificial intelligence. Previous editions have been cited in major newspapers, including the The New York Times, Bloomberg, and The Guardian, have amassed hundreds of academic citations, and been referenced by high-level policymakers in the United States, the United Kingdom, and the European Union, among other places. This year's edition surpasses all previous ones in size, scale, and scope, reflecting the growing significance that AI is coming to hold in all of our lives.


Augmented Physics: A Machine Learning-Powered Tool for Creating Interactive Physics Simulations from Static Diagrams

arXiv.org Artificial Intelligence

We introduce Augmented Physics, a machine learning-powered tool designed for creating interactive physics simulations from static textbook diagrams. Leveraging computer vision techniques, such as Segment Anything and OpenCV, our web-based system enables users to semi-automatically extract diagrams from physics textbooks and then generate interactive simulations based on the extracted content. These interactive diagrams are seamlessly integrated into scanned textbook pages, facilitating interactive and personalized learning experiences across various physics concepts, including gravity, optics, circuits, and kinematics. Drawing on an elicitation study with seven physics instructors, we explore four key augmentation techniques: 1) augmented experiments, 2) animated diagrams, 3) bi-directional manipulatives, and 4) parameter visualization. We evaluate our system through technical evaluation, a usability study (N=12), and expert interviews (N=12). The study findings suggest that our system can facilitate more engaging and personalized learning experiences in physics education.


Disentangling Heterogeneous Knowledge Concept Embedding for Cognitive Diagnosis on Untested Knowledge

arXiv.org Artificial Intelligence

Cognitive diagnosis is a fundamental and critical task in learning assessment, which aims to infer students' proficiency on knowledge concepts from their response logs. Current works assume each knowledge concept will certainly be tested and covered by multiple exercises. However, whether online or offline courses, it's hardly feasible to completely cover all knowledge concepts in several exercises. Restricted tests lead to undiscovered knowledge deficits, especially untested knowledge concepts(UKCs). In this paper, we propose a novel \underline{Dis}entangling Heterogeneous \underline{K}nowledge \underline{C}ognitive \underline{D}iagnosis framework on untested knowledge(DisKCD). Specifically, we leverage course grades, exercise questions, and resources to learn the potential representations of students, exercises, and knowledge concepts. In particular, knowledge concepts are disentangled into tested and untested based on the limiting actual exercises. We construct a heterogeneous relation graph network via students, exercises, tested knowledge concepts(TKCs), and UKCs. Then, through a hierarchical heterogeneous message-passing mechanism, the fine-grained relations are incorporated into the embeddings of the entities. Finally, the embeddings will be applied to multiple existing cognitive diagnosis models to infer students' proficiency on UKCs. Experimental results on real-world datasets show that the proposed model can effectively improve the performance of the task of diagnosing students' proficiency on UKCs. Our anonymous code is available at https://anonymous.4open.science/r/DisKCD.


Biometrics and Behavioral Modelling for Detecting Distractions in Online Learning

arXiv.org Artificial Intelligence

In this article, we explore computer vision approaches to detect abnormal head pose during e-learning sessions and we introduce a study on the effects of mobile phone usage during these sessions. We utilize behavioral data collected from 120 learners monitored while participating in a MOOC learning sessions. Our study focuses on the influence of phone-usage events on behavior and physiological responses, specifically attention, heart rate, and meditation, before, during, and after phone usage. Additionally, we propose an approach for estimating head pose events using images taken by the webcam during the MOOC learning sessions to detect phone-usage events. Our hypothesis suggests that head posture undergoes significant changes when learners interact with a mobile phone, contrasting with the typical behavior seen when learners face a computer during e-learning sessions. We propose an approach designed to detect deviations in head posture from the average observed during a learner's session, operating as a semi-supervised method. This system flags events indicating alterations in head posture for subsequent human review and selection of mobile phone usage occurrences with a sensitivity over 90%.


Generative AI for the Optimization of Next-Generation Wireless Networks: Basics, State-of-the-Art, and Open Challenges

arXiv.org Artificial Intelligence

Next-generation (xG) wireless networks, with their complex and dynamic nature, present significant challenges to using traditional optimization techniques. Generative AI (GAI) emerges as a powerful tool due to its unique strengths. Unlike traditional optimization techniques and other machine learning methods, GAI excels at learning from real-world network data, capturing its intricacies. This enables safe, offline exploration of various configurations and generation of diverse, unseen scenarios, empowering proactive, data-driven exploration and optimization for xG networks. Additionally, GAI's scalability makes it ideal for large-scale xG networks. This paper surveys how GAI-based models unlock optimization opportunities in xG wireless networks. We begin by providing a review of GAI models and some of the major communication paradigms of xG (e.g., 6G) wireless networks. We then delve into exploring how GAI can be used to improve resource allocation and enhance overall network performance. Additionally, we briefly review the networking requirements for supporting GAI applications in xG wireless networks. The paper further discusses the key challenges and future research directions in leveraging GAI for network optimization. Finally, a case study demonstrates the application of a diffusion-based GAI model for load balancing, carrier aggregation, and backhauling optimization in non-terrestrial networks, a core technology of xG networks. This case study serves as a practical example of how the combination of reinforcement learning and GAI can be implemented to address real-world network optimization problems.


Microsoft teams up with Khan Academy to make the Khanmigo AI teaching assistant free

Engadget

Microsoft and non-profit educational organization Khan Academy have formed a partnership that will allow all K-12 educators in the US to access the pilot version of Khanmigo for Teachers at no cost. Khanmigo is an AI-powered teaching assistant that can help teachers find ways to make lessons more fun and engaging. The tool can also quickly create lesson plans and suggest student groups for team activities. Khan Academy says Khanmigo can save teachers an average of five working hours every week. The service previously cost educators 4 a month, but Khan Academy has dropped those fees since its Microsoft partnership allows it to use the Azure OpenAI Service to power Khanmigo for free.


AI-Cybersecurity Education Through Designing AI-based Cyberharassment Detection Lab

arXiv.org Artificial Intelligence

Cyberharassment is a critical, socially relevant cybersecurity problem because of the adverse effects it can have on targeted groups or individuals. While progress has been made in understanding cyber-harassment, its detection, attacks on artificial intelligence (AI) based cyberharassment systems, and the social problems in cyberharassment detectors, little has been done in designing experiential learning educational materials that engage students in this emerging social cybersecurity in the era of AI. Experiential learning opportunities are usually provided through capstone projects and engineering design courses in STEM programs such as computer science. While capstone projects are an excellent example of experiential learning, given the interdisciplinary nature of this emerging social cybersecurity problem, it can be challenging to use them to engage non-computing students without prior knowledge of AI. Because of this, we were motivated to develop a hands-on lab platform that provided experiential learning experiences to non-computing students with little or no background knowledge in AI and discussed the lessons learned in developing this lab. In this lab used by social science students at North Carolina A&T State University across two semesters (spring and fall) in 2022, students are given a detailed lab manual and are to complete a set of well-detailed tasks. Through this process, students learn AI concepts and the application of AI for cyberharassment detection. Using pre- and post-surveys, we asked students to rate their knowledge or skills in AI and their understanding of the concepts learned. The results revealed that the students moderately understood the concepts of AI and cyberharassment.


Keep It Private: Unsupervised Privatization of Online Text

arXiv.org Artificial Intelligence

Authorship obfuscation techniques hold the promise of helping people protect their privacy in online communications by automatically rewriting text to hide the identity of the original author. However, obfuscation has been evaluated in narrow settings in the NLP literature and has primarily been addressed with superficial edit operations that can lead to unnatural outputs. In this work, we introduce an automatic text privatization framework that fine-tunes a large language model via reinforcement learning to produce rewrites that balance soundness, sense, and privacy. We evaluate it extensively on a large-scale test set of English Reddit posts by 68k authors composed of short-medium length texts. We study how the performance changes among evaluative conditions including authorial profile length and authorship detection strategy. Our method maintains high text quality according to both automated metrics and human evaluation, and successfully evades several automated authorship attacks.