Goto

Collaborating Authors

 Communications: Overviews


Unseen Attack Detection in Software-Defined Networking Using a BERT-Based Large Language Model

arXiv.org Artificial Intelligence

Software defined networking (SDN) represents a transformative shift in network architecture by decoupling the control plane from the data plane, enabling centralized and flexible management of network resources. However, this architectural shift introduces significant security challenges, as SDN's centralized control becomes an attractive target for various types of attacks. While current research has yielded valuable insights into attack detection in SDN, critical gaps remain. Addressing challenges in feature selection, broadening the scope beyond DDoS attacks, strengthening attack decisions based on multi flow analysis, and building models capable of detecting unseen attacks that they have not been explicitly trained on are essential steps toward advancing security in SDN. In this paper, we introduce a novel approach that leverages Natural Language Processing (NLP) and the pre trained BERT base model to enhance attack detection in SDN. Our approach transforms network flow data into a format interpretable by language models, allowing BERT to capture intricate patterns and relationships within network traffic. By using Random Forest for feature selection, we optimize model performance and reduce computational overhead, ensuring accurate detection. Attack decisions are made based on several flows, providing stronger and more reliable detection of malicious traffic. Furthermore, our approach is specifically designed to detect previously unseen attacks, offering a solution for identifying threats that the model was not explicitly trained on. To rigorously evaluate our approach, we conducted experiments in two scenarios: one focused on detecting known attacks, achieving 99.96% accuracy, and another on detecting unseen attacks, where our model achieved 99.96% accuracy, demonstrating the robustness of our approach in detecting evolving threats to improve the security of SDN networks.


Exploring What Why and How: A Multifaceted Benchmark for Causation Understanding of Video Anomaly

arXiv.org Artificial Intelligence

Recent advancements in video anomaly understanding (VAU) have opened the door to groundbreaking applications in various fields, such as traffic monitoring and industrial automation. While the current benchmarks in VAU predominantly emphasize the detection and localization of anomalies. Here, we endeavor to delve deeper into the practical aspects of VAU by addressing the essential questions: "what anomaly occurred?", "why did it happen?", and "how severe is this abnormal event?". In pursuit of these answers, we introduce a comprehensive benchmark for Exploring the Causation of Video Anomalies (ECVA). Our benchmark is meticulously designed, with each video accompanied by detailed human annotations. Specifically, each instance of our ECVA involves three sets of human annotations to indicate "what", "why" and "how" of an anomaly, including 1) anomaly type, start and end times, and event descriptions, 2) natural language explanations for the cause of an anomaly, and 3) free text reflecting the effect of the abnormality. Building upon this foundation, we propose a novel prompt-based methodology that serves as a baseline for tackling the intricate challenges posed by ECVA. We utilize "hard prompt" to guide the model to focus on the critical parts related to video anomaly segments, and "soft prompt" to establish temporal and spatial relationships within these anomaly segments. Furthermore, we propose AnomEval, a specialized evaluation metric crafted to align closely with human judgment criteria for ECVA. This metric leverages the unique features of the ECVA dataset to provide a more comprehensive and reliable assessment of various video large language models. We demonstrate the efficacy of our approach through rigorous experimental analysis and delineate possible avenues for further investigation into the comprehension of video anomaly causation.


Creativity in AI: Progresses and Challenges

arXiv.org Artificial Intelligence

Creativity is the ability to produce novel, useful, and surprising ideas, and has been widely studied as a crucial aspect of human cognition. Machine creativity on the other hand has been a long-standing challenge. With the rise of advanced generative AI, there has been renewed interest and debate regarding AI's creative capabilities. Therefore, it is imperative to revisit the state of creativity in AI and identify key progresses and remaining challenges. In this work, we survey leading works studying the creative capabilities of AI systems, focusing on creative problem-solving, linguistic, artistic, and scientific creativity. Our review suggests that while the latest AI models are largely capable of producing linguistically and artistically creative outputs such as poems, images, and musical pieces, they struggle with tasks that require creative problem-solving, abstract thinking and compositionality and their generations suffer from a lack of diversity, originality, long-range incoherence and hallucinations. We also discuss key questions concerning copyright and authorship issues with generative models. Furthermore, we highlight the need for a comprehensive evaluation of creativity that is process-driven and considers several dimensions of creativity. Finally, we propose future research directions to improve the creativity of AI outputs, drawing inspiration from cognitive science and psychology.


A Systematic Review of Machine Learning Approaches for Detecting Deceptive Activities on Social Media: Methods, Challenges, and Biases

arXiv.org Machine Learning

Social media platforms like Twitter, Facebook, and Instagram have facilitated the spread of misinformation, necessitating automated detection systems. This systematic review evaluates 36 studies that apply machine learning (ML) and deep learning (DL) models to detect fake news, spam, and fake accounts on social media. Using the Prediction model Risk Of Bias ASsessment Tool (PROBAST), the review identified key biases across the ML lifecycle: selection bias due to non-representative sampling, inadequate handling of class imbalance, insufficient linguistic preprocessing (e.g., negations), and inconsistent hyperparameter tuning. Although models such as Support Vector Machines (SVM), Random Forests, and Long Short-Term Memory (LSTM) networks showed strong potential, over-reliance on accuracy as an evaluation metric in imbalanced data settings was a common flaw. The review highlights the need for improved data preprocessing (e.g., resampling techniques), consistent hyperparameter tuning, and the use of appropriate metrics like precision, recall, F1 score, and AUROC. Addressing these limitations can lead to more reliable and generalizable ML/DL models for detecting deceptive content, ultimately contributing to the reduction of misinformation on social media.


Efficient Distributed Training through Gradient Compression with Sparsification and Quantization Techniques

arXiv.org Artificial Intelligence

This study investigates the impact of gradient compression on distributed training performance, focusing on sparsification and quantization techniques, including top-k, DGC, and QSGD. In baseline experiments, random-k compression results in severe performance degradation, highlighting its inefficacy. In contrast, using top-k and DGC at 50 times compression yields performance improvements, reducing perplexity by up to 0.06 compared to baseline. Experiments across 1, 2, and 4 workers demonstrate that conservative sparsification can have a regularizing effect, especially for smaller models, while compression ratios above 5000 times impair performance, particularly for DGC. Communication times are reduced across all compression methods, with top-k and DGC decreasing communication to negligible levels at high compression ratios. However, increased computation times offset this efficiency for top-k due to sorting demands, making it less scalable than DGC or QSGD. In convergence tests, sparsification techniques show accelerated convergence, requiring fewer epochs than the baseline, which has implications for computational savings. Although precision trade-offs emerge, floating point errors are mitigated by compression. This study's findings underscore the need to tune hyperparameters specifically for each compression technique to achieve optimal model performance, especially in distributed training systems.


Machine Theory of Mind for Autonomous Cyber-Defence

arXiv.org Artificial Intelligence

Intelligent autonomous agents hold much potential for the domain of cyber security. However, due to many state-of-the-art approaches relying on uninterpretable black-box models, there is growing demand for methods that offer stakeholders clear and actionable insights into their latent beliefs and motivations. To address this, we evaluate Theory of Mind (ToM) approaches for Autonomous Cyber Operations. Upon learning a robust prior, ToM models can predict an agent's goals, behaviours, and contextual beliefs given only a handful of past behaviour observations. In this paper, we introduce a novel Graph Neural Network (GNN)-based ToM architecture tailored for cyber-defence, Graph-In, Graph-Out (GIGO)-ToM, which can accurately predict both the targets and attack trajectories of adversarial cyber agents over arbitrary computer network topologies. To evaluate the latter, we propose a novel extension of the Wasserstein distance for measuring the similarity of graph-based probability distributions. Whereas the standard Wasserstein distance lacks a fixed reference scale, we introduce a graph-theoretic normalization factor that enables a standardized comparison between networks of different sizes. We furnish this metric, which we term the Network Transport Distance (NTD), with a weighting function that emphasizes predictions according to custom node features, allowing network operators to explore arbitrary strategic considerations. Benchmarked against a Graph-In, Dense-Out (GIDO)-ToM architecture in an abstract cyber-defence environment, our empirical evaluations show that GIGO-ToM can accurately predict the goals and behaviours of various unseen cyber-attacking agents across a range of network topologies, as well as learn embeddings that can effectively characterize their policies.


Towards Data Governance of Frontier AI Models

arXiv.org Artificial Intelligence

Data is essential to train and fine-tune today's frontier artificial intelligence (AI) models and to develop future ones. To date, academic, legal, and regulatory work has primarily addressed how data can directly harm consumers and creators, such as through privacy breaches, copyright infringements, and bias and discrimination. Our work, instead, focuses on the comparatively neglected question of how data can enable new governance capacities for frontier AI models. This approach for "frontier data governance" opens up new avenues for monitoring and mitigating risks from advanced AI models, particularly as they scale and acquire specific dangerous capabilities. Still, frontier data governance faces challenges that stem from the fundamental properties of data itself: data is non-rival, often non-excludable, easily replicable, and increasingly synthesizable. Despite these inherent difficulties, we propose a set of policy mechanisms targeting key actors along the data supply chain, including data producers, aggregators, model developers, and data vendors. We provide a brief overview of 15 governance mechanisms, of which we centrally introduce five, underexplored policy recommendations. These include developing canary tokens to detect unauthorized use for producers; (automated) data filtering to remove malicious content for pre-training and post-training datasets; mandatory dataset reporting requirements for developers and vendors; improved security for datasets and data generation algorithms; and know-your-customer requirements for vendors. By considering data not just as a source of potential harm, but as a critical governance lever, this work aims to equip policymakers with a new tool for the governance and regulation of frontier AI models.


On Privacy, Security, and Trustworthiness in Distributed Wireless Large AI Models (WLAM)

arXiv.org Artificial Intelligence

Combining wireless communication with large artificial intelligence (AI) models can open up a myriad of novel application scenarios. In sixth generation (6G) networks, ubiquitous communication and computing resources allow large AI models to serve democratic large AI models-related services to enable real-time applications like autonomous vehicles, smart cities, and Internet of Things (IoT) ecosystems. However, the security considerations and sustainable communication resources limit the deployment of large AI models over distributed wireless networks. This paper provides a comprehensive overview of privacy, security, and trustworthy for distributed wireless large AI model (WLAM). In particular, a detailed privacy and security are analysis for distributed WLAM is fist revealed. The classifications and theoretical findings about privacy and security in distributed WLAM are discussed. Then the trustworthy and ethics for implementing distributed WLAM are described. Finally, the comprehensive applications of distributed WLAM are presented in the context of electromagnetic signal processing.


The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation

arXiv.org Artificial Intelligence

This report surveys the landscape of potential security threats from malicious uses of AI, and proposes ways to better forecast, prevent, and mitigate these threats. After analyzing the ways in which AI may influence the threat landscape in the digital, physical, and political domains, we make four high-level recommendations for AI researchers and other stakeholders. We also suggest several promising areas for further research that could expand the portfolio of defenses, or make attacks less effective or harder to execute. Finally, we discuss, but do not conclusively resolve, the long-term equilibrium of attackers and defenders.


Was that Sarcasm?: A Literature Survey on Sarcasm Detection

arXiv.org Artificial Intelligence

Sarcasm is hard to interpret as human beings. Being able to interpret sarcasm is often termed as a sign of intelligence, given the complex nature of sarcasm. Hence, this is a field of Natural Language Processing which is still complex for computers to decipher. This Literature Survey delves into different aspects of sarcasm detection, to create an understanding of the underlying problems faced during detection, approaches used to solve this problem, and different forms of available datasets for sarcasm detection.